Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00Multichain Info
N/A
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
6451640 | 79 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
K1MeeValidator
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
Yes with 999 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; import {IValidator, MODULE_TYPE_VALIDATOR} from "erc7579/interfaces/IERC7579Module.sol"; import {ISessionValidator} from "contracts/interfaces/ISessionValidator.sol"; import {EnumerableSet} from "EnumerableSet4337/EnumerableSet4337.sol"; import {PackedUserOperation} from "account-abstraction/interfaces/PackedUserOperation.sol"; import {ERC7739Validator} from "erc7739Validator/ERC7739Validator.sol"; import { SIG_TYPE_SIMPLE, SIG_TYPE_ON_CHAIN, SIG_TYPE_ERC20_PERMIT, EIP1271_SUCCESS, EIP1271_FAILED, MODULE_TYPE_STATELESS_VALIDATOR, SIG_TYPE_MEE_FLOW } from "contracts/types/Constants.sol"; // Fusion libraries - validate userOp using on-chain tx or off-chain permit import {PermitValidatorLib} from "../lib/fusion/PermitValidatorLib.sol"; import {TxValidatorLib} from "../lib/fusion/TxValidatorLib.sol"; import {SimpleValidatorLib} from "../lib/fusion/SimpleValidatorLib.sol"; import {NoMeeFlowLib} from "../lib/fusion/NoMeeFlowLib.sol"; import {EcdsaLib} from "../lib/util/EcdsaLib.sol"; /** * @title K1MeeValidator * @dev An ERC-7579 validator (module type 1) and stateless validator (module type 7) for the MEE stack. * Supports 3 MEE modes: * - Simple (Super Tx hash is signed) * - On-chain Tx (Super Tx hash is appended to a regular txn and signed) * - ERC-2612 Permit (Super Tx hash is pasted into deadline field of the ERC-2612 Permit and signed) * * Further improvements: * - Further gas optimizations * - Use EIP-712 to make superTx hash not blind => use 7739 for the MEE 1271 flows * * Using erc7739 for MEE flows makes no sense currently because user signs blind hashes anyways * (except permit mode, but the superTx hash is still blind in it). * So we just hash smart account address into the og hash for 1271 MEE flow currently. * In future full scale 7739 will replace it when superTx hash is 712 and transparent. * */ contract K1MeeValidator is IValidator, ISessionValidator, ERC7739Validator { using EnumerableSet for EnumerableSet.AddressSet; /*////////////////////////////////////////////////////////////////////////// CONSTANTS & STORAGE //////////////////////////////////////////////////////////////////////////*/ uint256 private constant ENCODED_DATA_OFFSET = 4; /// @notice Mapping of smart account addresses to their respective owner addresses mapping(address => address) public smartAccountOwners; /// @notice Set of safe senders for each smart account EnumerableSet.AddressSet private _safeSenders; /// @notice Error to indicate that no owner was provided during installation error NoOwnerProvided(); /// @notice Error to indicate that the new owner cannot be the zero address error ZeroAddressNotAllowed(); /// @notice Error to indicate the module is already initialized error ModuleAlreadyInitialized(); /// @notice Error to indicate that the new owner cannot be a contract address error NewOwnerIsNotEOA(); /// @notice Error to indicate that the owner cannot be the zero address error OwnerCannotBeZeroAddress(); /// @notice Error to indicate that the data length is invalid error InvalidDataLength(); /// @notice Error to indicate that the safe senders length is invalid error SafeSendersLengthInvalid(); /*////////////////////////////////////////////////////////////////////////// CONFIG //////////////////////////////////////////////////////////////////////////*/ /** * Initialize the module with the given data * * @param data The data to initialize the module with */ function onInstall(bytes calldata data) external override { require(data.length != 0, NoOwnerProvided()); require(!_isInitialized(msg.sender), ModuleAlreadyInitialized()); address newOwner = address(bytes20(data[:20])); require(newOwner != address(0), OwnerCannotBeZeroAddress()); if (_isNotEOA(newOwner)) { revert NewOwnerIsNotEOA(); } smartAccountOwners[msg.sender] = newOwner; if (data.length > 20) { _fillSafeSenders(data[20:]); } } /** * De-initialize the module with the given data */ function onUninstall(bytes calldata) external override { delete smartAccountOwners[msg.sender]; _safeSenders.removeAll(msg.sender); } /// @notice Transfers ownership of the validator to a new owner /// @param newOwner The address of the new owner function transferOwnership(address newOwner) external { require(newOwner != address(0), ZeroAddressNotAllowed()); if (_isNotEOA(newOwner)) { revert NewOwnerIsNotEOA(); } smartAccountOwners[msg.sender] = newOwner; } /** * Check if the module is initialized * @param smartAccount The smart account to check * * @return true if the module is initialized, false otherwise */ function isInitialized(address smartAccount) external view returns (bool) { return _isInitialized(smartAccount); } /// @notice Adds a safe sender to the _safeSenders list for the smart account function addSafeSender(address sender) external { _safeSenders.add(msg.sender, sender); } /// @notice Removes a safe sender from the _safeSenders list for the smart account function removeSafeSender(address sender) external { _safeSenders.remove(msg.sender, sender); } /// @notice Checks if a sender is in the _safeSenders list for the smart account function isSafeSender(address sender, address smartAccount) external view returns (bool) { return _safeSenders.contains(smartAccount, sender); } /*////////////////////////////////////////////////////////////////////////// MODULE LOGIC //////////////////////////////////////////////////////////////////////////*/ /** * Validates PackedUserOperation * * @param userOp UserOperation to be validated * @param userOpHash Hash of the UserOperation to be validated * @dev fallback flow => non MEE flow => no dedicated prefix introduced for the sake of compatibility. * It may lead to a case where some signature turns out to have first bytes matching the prefix. * However, this is very unlikely to happen and even if it does, the consequences are just * that the signature is not validated which is easily solved by altering userOp => hash => sig. * The userOp.signature is encoded as follows: * MEE flow: [65 bytes node master signature] [4 bytes sigType] [encoded data for this validator] * Non-MEE flow: [65 bytes regular secp256k1 sig] * * @return uint256 the result of the signature validation, which can be: * - 0 if the signature is valid * - 1 if the signature is invalid * - <20-byte> aggregatorOrSigFail, <6-byte> validUntil and <6-byte> validAfter (see ERC-4337 * for more details) */ function validateUserOp(PackedUserOperation calldata userOp, bytes32 userOpHash) external override returns (uint256) { address owner = getOwner(userOp.sender); if (userOp.signature.length < ENCODED_DATA_OFFSET) { // if sig is short then we are sure it is a non-MEE flow return NoMeeFlowLib.validateUserOp(userOpHash, userOp.signature, owner); } else { bytes4 sigType = bytes4(userOp.signature[0:ENCODED_DATA_OFFSET]); if (sigType == SIG_TYPE_SIMPLE) { return SimpleValidatorLib.validateUserOp(userOpHash, userOp.signature[ENCODED_DATA_OFFSET:], owner); } else if (sigType == SIG_TYPE_ON_CHAIN) { return TxValidatorLib.validateUserOp(userOpHash, userOp.signature[ENCODED_DATA_OFFSET:userOp.signature.length], owner); } else if (sigType == SIG_TYPE_ERC20_PERMIT) { return PermitValidatorLib.validateUserOp(userOpHash, userOp.signature[ENCODED_DATA_OFFSET:], owner); } else { // fallback flow => non MEE flow => no prefix return NoMeeFlowLib.validateUserOp(userOpHash, userOp.signature, owner); } } } /** * Validates an ERC-1271 signature * * @param sender The sender of the ERC-1271 call to the account * @param hash The hash of the message * @param signature The signature of the message * * @return sigValidationResult the result of the signature validation, which can be: * - EIP1271_SUCCESS if the signature is valid * - EIP1271_FAILED if the signature is invalid */ function isValidSignatureWithSender(address sender, bytes32 hash, bytes calldata signature) external view virtual override returns (bytes4 sigValidationResult) { if (bytes3(signature[0:3]) != SIG_TYPE_MEE_FLOW) { // Non MEE 7739 flow // goes to ERC7739Validator to apply 7739 magic and then returns back // to this contract's _erc1271IsValidSignatureNowCalldata() method. return _erc1271IsValidSignatureWithSender(sender, hash, _erc1271UnwrapSignature(signature)); } else { // non-7739 flow // hash the SA into the `hash` to protect against two SA's with same owner vector return _validateSignatureForOwner( getOwner(msg.sender), keccak256(abi.encodePacked(hash, msg.sender)), _erc1271UnwrapSignature(signature) ) ? EIP1271_SUCCESS : EIP1271_FAILED; } } /// @notice ISessionValidator interface for smart session /// @param hash The hash of the data to validate /// @param sig The signature data /// @param data The data to validate against (owner address in this case) function validateSignatureWithData(bytes32 hash, bytes calldata sig, bytes calldata data) external view returns (bool validSig) { require(data.length >= 20, InvalidDataLength()); return _validateSignatureForOwner(address(bytes20(data[:20])), hash, sig); } /** * Get the owner of the smart account * @param smartAccount The address of the smart account * @return The owner of the smart account */ function getOwner(address smartAccount) public view returns (address) { address owner = smartAccountOwners[smartAccount]; return owner == address(0) ? smartAccount : owner; } /*////////////////////////////////////////////////////////////////////////// METADATA //////////////////////////////////////////////////////////////////////////*/ /// @notice Returns the name of the module /// @return The name of the module function name() external pure returns (string memory) { return "K1MeeValidator"; } /// @notice Returns the version of the module /// @return The version of the module /// @dev /// - supports appended 65-bytes signature for on-chain fusion mode /// - supports erc7702-delegated EOAs as owners function version() external pure returns (string memory) { return "1.0.3"; } /// @notice Checks if the module is of the specified type /// @param typeId The type ID to check /// @return True if the module is of the specified type, false otherwise function isModuleType(uint256 typeId) external pure returns (bool) { return typeId == MODULE_TYPE_VALIDATOR || typeId == MODULE_TYPE_STATELESS_VALIDATOR; } /*////////////////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////////////////*/ /// @notice Internal method that does the job of validating the signature via ECDSA (secp256k1) /// @param owner The address of the owner /// @param hash The hash of the data to validate /// @param signature The signature data function _validateSignatureForOwner(address owner, bytes32 hash, bytes calldata signature) internal view returns (bool) { bytes4 sigType = bytes4(signature[0:4]); if (sigType == SIG_TYPE_SIMPLE) { return SimpleValidatorLib.validateSignatureForOwner(owner, hash, signature[4:]); } else if (sigType == SIG_TYPE_ON_CHAIN) { return TxValidatorLib.validateSignatureForOwner(owner, hash, signature[4:]); } else if (sigType == SIG_TYPE_ERC20_PERMIT) { return PermitValidatorLib.validateSignatureForOwner(owner, hash, signature[4:]); } else { // fallback flow => non MEE flow => no prefix return NoMeeFlowLib.validateSignatureForOwner(owner, hash, signature); } } /// @notice Checks if the smart account is initialized with an owner /// @param smartAccount The address of the smart account /// @return True if the smart account has an owner, false otherwise function _isInitialized(address smartAccount) private view returns (bool) { return smartAccountOwners[smartAccount] != address(0); } // @notice Fills the _safeSenders list from the given data function _fillSafeSenders(bytes calldata data) private { require(data.length % 20 == 0, SafeSendersLengthInvalid()); for (uint256 i; i < data.length / 20; i++) { _safeSenders.add(msg.sender, address(bytes20(data[20 * i:20 * (i + 1)]))); } } /// @notice Checks if the address is a contract /// @param account The address to check /// @return True if the address is a contract, false otherwise function _isNotEOA(address account) private view returns (bool) { uint256 size; assembly { size := extcodesize(account) } // has code and is not delegated via eip-7702 return (size > 0) && (size != 23); } /// @dev Returns whether the `hash` and `signature` are valid. /// Obtains the authorized signer's credentials and calls some /// module's specific internal function to validate the signature /// against credentials. function _erc1271IsValidSignatureNowCalldata(bytes32 hash, bytes calldata signature) internal view override returns (bool) { // call custom internal function to validate the signature against credentials return EcdsaLib.isValidSignature(getOwner(msg.sender), hash, signature); } /// @dev Returns whether the `sender` is considered safe, such /// that we don't need to use the nested EIP-712 workflow. /// See: https://mirror.xyz/curiousapple.eth/pFqAdW2LiJ-6S4sg_u1z08k4vK6BCJ33LcyXpnNb8yU // The canonical `MulticallerWithSigner` at 0x000000000000D9ECebf3C23529de49815Dac1c4c // is known to include the account in the hash to be signed. // msg.sender = Smart Account // sender = 1271 og request sender function _erc1271CallerIsSafe(address sender) internal view virtual override returns (bool) { return ( sender == 0x000000000000D9ECebf3C23529de49815Dac1c4c // MulticallerWithSigner || sender == msg.sender // Smart Account. Assume smart account never sends non safe eip-712 struct || _safeSenders.contains(msg.sender, sender) ); // check if sender is in _safeSenders for the Smart Account } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; import { PackedUserOperation } from "account-abstraction/interfaces/PackedUserOperation.sol"; uint256 constant VALIDATION_SUCCESS = 0; uint256 constant VALIDATION_FAILED = 1; uint256 constant MODULE_TYPE_VALIDATOR = 1; uint256 constant MODULE_TYPE_EXECUTOR = 2; uint256 constant MODULE_TYPE_FALLBACK = 3; uint256 constant MODULE_TYPE_HOOK = 4; uint256 constant MODULE_TYPE_PREVALIDATION_HOOK_ERC1271 = 8; uint256 constant MODULE_TYPE_PREVALIDATION_HOOK_ERC4337 = 9; interface IModule { error AlreadyInitialized(address smartAccount); error NotInitialized(address smartAccount); /** * @dev This function is called by the smart account during installation of the module * @param data arbitrary data that may be required on the module during `onInstall` * initialization * * MUST revert on error (i.e. if module is already enabled) */ function onInstall(bytes calldata data) external; /** * @dev This function is called by the smart account during uninstallation of the module * @param data arbitrary data that may be required on the module during `onUninstall` * de-initialization * * MUST revert on error */ function onUninstall(bytes calldata data) external; /** * @dev Returns boolean value if module is a certain type * @param moduleTypeId the module type ID according the ERC-7579 spec * * MUST return true if the module is of the given type and false otherwise */ function isModuleType(uint256 moduleTypeId) external view returns (bool); /** * @dev Returns if the module was already initialized for a provided smartaccount */ function isInitialized(address smartAccount) external view returns (bool); } interface IValidator is IModule { error InvalidTargetAddress(address target); /** * @dev Validates a transaction on behalf of the account. * This function is intended to be called by the MSA during the ERC-4337 validaton phase * Note: solely relying on bytes32 hash and signature is not suffcient for some * validation implementations (i.e. SessionKeys often need access to userOp.calldata) * @param userOp The user operation to be validated. The userOp MUST NOT contain any metadata. * The MSA MUST clean up the userOp before sending it to the validator. * @param userOpHash The hash of the user operation to be validated * @return return value according to ERC-4337 */ function validateUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash ) external returns (uint256); /** * Validator can be used for ERC-1271 validation */ function isValidSignatureWithSender( address sender, bytes32 hash, bytes calldata data ) external view returns (bytes4); } interface IExecutor is IModule { } interface IHook is IModule { function preCheck( address msgSender, uint256 msgValue, bytes calldata msgData ) external returns (bytes memory hookData); function postCheck(bytes calldata hookData) external; } interface IFallback is IModule { } interface IPreValidationHookERC1271 is IModule { function preValidationHookERC1271( address sender, bytes32 hash, bytes calldata data ) external view returns (bytes32 hookHash, bytes memory hookSignature); } interface IPreValidationHookERC4337 is IModule { function preValidationHookERC4337( PackedUserOperation calldata userOp, uint256 missingAccountFunds, bytes32 userOpHash ) external returns (bytes32 hookHash, bytes memory hookSignature); }
// SPDX-License-Identifier: LGPL-3.0-only pragma solidity ^0.8.23; import {IModule} from "erc7579/interfaces/IERC7579Module.sol"; uint256 constant ERC7579_MODULE_TYPE_STATELESS_VALIDATOR = 7; /** * ISessionValidator is a contract that validates signatures for a given session. * this interface expects to validate the signature in a stateless way. * all parameters required to validate the signature are passed in the function call. * Only one ISessionValidator is responsible to validate a userOp. * if you want to use multiple validators, you can create a ISessionValidator that aggregates multiple signatures that * are packed into userOp.signature * It is used to validate the signature of a session. * hash The userOp hash * sig The signature of userOp * data the config data that is used to validate the signature */ interface ISessionValidator is IModule { function validateSignatureWithData(bytes32 hash, bytes calldata sig, bytes calldata data) external view returns (bool validSig); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "./AssociatedArrayLib.sol"; /** * Fork of OZ's EnumerableSet that makes all storage access ERC-4337 compliant via associated storage * @author zeroknots.eth (rhinestone) */ library EnumerableSet { using AssociatedArrayLib for AssociatedArrayLib.Bytes32Array; // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values AssociatedArrayLib.Bytes32Array _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => mapping(address account => uint256)) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, address account, bytes32 value) private returns (bool) { if (!_contains(set, account, value)) { set._values.push(account, value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value][account] = set._values.length(account); return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, address account, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value][account]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length(account) - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values.get(account, lastIndex); // Move the lastValue to the index where the value to delete is set._values.set(account, valueIndex, lastValue); // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue][account] = position; } // Delete the slot where the moved value was stored set._values.pop(account); // Delete the tracked position for the deleted slot delete set._positions[value][account]; return true; } else { return false; } } function _removeAll(Set storage set, address account) internal { // get length of the array uint256 len = _length(set, account); for (uint256 i = 1; i <= len; i++) { // get last value bytes32 value = _at(set, account, len - i); _remove(set, account, value); } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, address account, bytes32 value) private view returns (bool) { return set._positions[value][account] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set, address account) private view returns (uint256) { return set._values.length(account); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, address account, uint256 index) private view returns (bytes32) { return set._values.get(account, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set, address account) private view returns (bytes32[] memory) { return set._values.getAll(account); } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, address account, bytes32 value) internal returns (bool) { return _add(set._inner, account, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, address account, bytes32 value) internal returns (bool) { return _remove(set._inner, account, value); } function removeAll(Bytes32Set storage set, address account) internal { return _removeAll(set._inner, account); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, address account, bytes32 value) internal view returns (bool) { return _contains(set._inner, account, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set, address account) internal view returns (uint256) { return _length(set._inner, account); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, address account, uint256 index) internal view returns (bytes32) { return _at(set._inner, account, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set, address account) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner, account); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address account, address value) internal returns (bool) { return _add(set._inner, account, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address account, address value) internal returns (bool) { return _remove(set._inner, account, bytes32(uint256(uint160(value)))); } function removeAll(AddressSet storage set, address account) internal { return _removeAll(set._inner, account); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address account, address value) internal view returns (bool) { return _contains(set._inner, account, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set, address account) internal view returns (uint256) { return _length(set._inner, account); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, address account, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, account, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set, address account) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner, account); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, address account, uint256 value) internal returns (bool) { return _add(set._inner, account, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, address account, uint256 value) internal returns (bool) { return _remove(set._inner, account, bytes32(value)); } function removeAll(UintSet storage set, address account) internal { return _removeAll(set._inner, account); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, address account, uint256 value) internal view returns (bool) { return _contains(set._inner, account, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set, address account) internal view returns (uint256) { return _length(set._inner, account); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, address account, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, account, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set, address account) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner, account); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.7.5; /** * User Operation struct * @param sender - The sender account of this request. * @param nonce - Unique value the sender uses to verify it is not a replay. * @param initCode - If set, the account contract will be created by this constructor/ * @param callData - The method call to execute on this account. * @param accountGasLimits - Packed gas limits for validateUserOp and gas limit passed to the callData method call. * @param preVerificationGas - Gas not calculated by the handleOps method, but added to the gas paid. * Covers batch overhead. * @param gasFees - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters. * @param paymasterAndData - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data * The paymaster will pay for the transaction instead of the sender. * @param signature - Sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct PackedUserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; bytes32 accountGasLimits; uint256 preVerificationGas; bytes32 gasFees; bytes paymasterAndData; bytes signature; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; interface IERC5267 { function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } /// @title ERC-7739: Nested Typed Data Sign Support for ERC-7579 Validators abstract contract ERC7739Validator { error InvalidSignature(); /// @dev `keccak256("PersonalSign(bytes prefixed)")`. bytes32 internal constant _PERSONAL_SIGN_TYPEHASH = 0x983e65e5148e570cd828ead231ee759a8d7958721a768f93bc4483ba005c32de; bytes32 internal constant _DOMAIN_TYPEHASH = 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f; bytes4 internal constant SUPPORTS_ERC7739_V1 = 0x77390001; /*////////////////////////////////////////////////////////////////////////// INTERNAL //////////////////////////////////////////////////////////////////////////*/ /// @dev Returns whether the `signature` is valid for the `hash. /// Use this in your validator's `isValidSignatureWithSender` implementation. function _erc1271IsValidSignatureWithSender(address sender, bytes32 hash, bytes calldata signature) internal view virtual returns (bytes4) { // detection request // this check only takes 17 gas units // in theory, it can be moved out of this function so it doesn't apply to every // isValidSignatureWithSender() call, but it would require an additional standard // interface for SA to check if the IValidator supports ERC-7739 // while isValidSignatureWithSender() is specified by ERC-7579, so // it makes sense to use it in SA to check if the validator supports ERC-7739 unchecked { if (signature.length == uint256(0)) { // Forces the compiler to optimize for smaller bytecode size. if (uint256(hash) == ~signature.length / 0xffff * 0x7739) return SUPPORTS_ERC7739_V1; } } // sig malleability prevention bytes32 s; assembly { // same as `s := mload(add(signature, 0x40))` but for calldata s := calldataload(add(signature.offset, 0x20)) } if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { revert InvalidSignature(); } bool success = _erc1271IsValidSignatureViaSafeCaller(sender, hash, signature) || _erc1271IsValidSignatureViaNestedEIP712(hash, signature) || _erc1271IsValidSignatureViaRPC(hash, signature); bytes4 sigValidationResult; assembly { // `success ? bytes4(keccak256("isValidSignature(bytes32,bytes)")) : 0xffffffff`. // We use `0xffffffff` for invalid, in convention with the reference implementation. sigValidationResult := shl(224, or(0x1626ba7e, sub(0, iszero(success)))) } return sigValidationResult; } /// @dev Returns whether the `msg.sender` is considered safe, such /// that we don't need to use the nested EIP-712 workflow. /// Override to return true for more callers. /// See: https://mirror.xyz/curiousapple.eth/pFqAdW2LiJ-6S4sg_u1z08k4vK6BCJ33LcyXpnNb8yU function _erc1271CallerIsSafe(address sender) internal view virtual returns (bool) { // The canonical `MulticallerWithSigner` at 0x000000000000D9ECebf3C23529de49815Dac1c4c // is known to include the account in the hash to be signed. return sender == 0x000000000000D9ECebf3C23529de49815Dac1c4c; } /// @dev Returns whether the `hash` and `signature` are valid. /// Obtains the authorized signer's credentials and calls some /// module's specific internal function to validate the signature /// against credentials. /// Override for your module's custom logic. function _erc1271IsValidSignatureNowCalldata(bytes32 hash, bytes calldata signature) internal view virtual returns (bool); /// @dev Unwraps and returns the signature. function _erc1271UnwrapSignature(bytes calldata signature) internal view virtual returns (bytes calldata result) { result = signature; /// @solidity memory-safe-assembly assembly { // Unwraps the ERC6492 wrapper if it exists. // See: https://eips.ethereum.org/EIPS/eip-6492 if eq( calldataload(add(result.offset, sub(result.length, 0x20))), mul(0x6492, div(not(shr(address(), address())), 0xffff)) // `0x6492...6492`. ) { let o := add(result.offset, calldataload(add(result.offset, 0x40))) result.length := calldataload(o) result.offset := add(o, 0x20) } } } /// @dev Performs the signature validation without nested EIP-712 if the caller is /// a safe caller. A safe caller must include the address of this account in the hash. function _erc1271IsValidSignatureViaSafeCaller(address sender, bytes32 hash, bytes calldata signature) internal view virtual returns (bool result) { if (_erc1271CallerIsSafe(sender)) result = _erc1271IsValidSignatureNowCalldata(hash, signature); } /// @dev ERC1271 signature validation (Nested EIP-712 workflow). /// /// This uses ECDSA recovery by default (see: `_erc1271IsValidSignatureNowCalldata`). /// It also uses a nested EIP-712 approach to prevent signature replays when a single EOA /// owns multiple smart contract accounts, /// while still enabling wallet UIs (e.g. Metamask) to show the EIP-712 values. /// /// Crafted for phishing resistance, efficiency, flexibility. /// __________________________________________________________________________________________ /// /// Glossary: /// /// - `APP_DOMAIN_SEPARATOR`: The domain separator of the `hash` passed in by the application. /// Provided by the front end. Intended to be the domain separator of the contract /// that will call `isValidSignature` on this account. /// /// - `ACCOUNT_DOMAIN_SEPARATOR`: The domain separator of this account. /// See: `EIP712._domainSeparator()`. /// __________________________________________________________________________________________ /// /// For the `TypedDataSign` workflow, the final hash will be: /// ``` /// keccak256(\x19\x01 ‖ APP_DOMAIN_SEPARATOR ‖ /// hashStruct(TypedDataSign({ /// contents: hashStruct(originalStruct), /// name: keccak256(bytes(eip712Domain().name)), /// version: keccak256(bytes(eip712Domain().version)), /// chainId: eip712Domain().chainId, /// verifyingContract: eip712Domain().verifyingContract, /// salt: eip712Domain().salt /// })) /// ) /// ``` /// where `‖` denotes the concatenation operator for bytes. /// The order of the fields is important: `contents` comes before `name`. /// /// The signature will be `r ‖ s ‖ v ‖ APP_DOMAIN_SEPARATOR ‖ /// contents ‖ contentsDescription ‖ uint16(contentsDescription.length)`, /// where: /// - `contents` is the bytes32 struct hash of the original struct. /// - `contentsDescription` can be either: /// a) `contentsType` (implicit mode) /// where `contentsType` starts with `contentsName`. /// b) `contentsType ‖ contentsName` (explicit mode) /// where `contentsType` may not necessarily start with `contentsName`. /// /// The `APP_DOMAIN_SEPARATOR` and `contents` will be used to verify if `hash` is indeed correct. /// __________________________________________________________________________________________ /// /// For the `PersonalSign` workflow, the final hash will be: /// ``` /// keccak256(\x19\x01 ‖ ACCOUNT_DOMAIN_SEPARATOR ‖ /// hashStruct(PersonalSign({ /// prefixed: keccak256(bytes(\x19Ethereum Signed Message:\n ‖ /// base10(bytes(someString).length) ‖ someString)) /// })) /// ) /// ``` /// where `‖` denotes the concatenation operator for bytes. /// /// The `PersonalSign` type hash will be `keccak256("PersonalSign(bytes prefixed)")`. /// The signature will be `r ‖ s ‖ v`. /// __________________________________________________________________________________________ /// /// For demo and typescript code, see: /// - https://github.com/junomonster/nested-eip-712 /// - https://github.com/frangio/eip712-wrapper-for-eip1271 /// /// Their nomenclature may differ from ours, although the high-level idea is similar. /// /// Of course, if you have control over the codebase of the wallet client(s) too, /// you can choose a more minimalistic signature scheme like /// `keccak256(abi.encode(address(this), hash))` instead of all these acrobatics. /// All these are just for widespread out-of-the-box compatibility with other wallet clients. /// We want to create bazaars, not walled castles. /// And we'll use push the Turing Completeness of the EVM to the limits to do so. function _erc1271IsValidSignatureViaNestedEIP712(bytes32 hash, bytes calldata signature) internal view virtual returns (bool result) { //bytes32 t = _typedDataSignFieldsForAccount(msg.sender); uint256 t = uint256(uint160(address(this))); // Forces the compiler to pop the variables after the scope, avoiding stack-too-deep. if (t != uint256(0)) { ( , string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, ) = IERC5267(msg.sender).eip712Domain(); /// @solidity memory-safe-assembly assembly { t := mload(0x40) // Grab the free memory pointer. // Skip 2 words for the `typedDataSignTypehash` and `contents` struct hash. mstore(add(t, 0x40), keccak256(add(name, 0x20), mload(name))) mstore(add(t, 0x60), keccak256(add(version, 0x20), mload(version))) mstore(add(t, 0x80), chainId) mstore(add(t, 0xa0), shr(96, shl(96, verifyingContract))) mstore(add(t, 0xc0), salt) mstore(0x40, add(t, 0xe0)) // Allocate the memory. } } /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. // `c` is `contentsDescription.length`, which is stored in the last 2 bytes of the signature. let c := shr(240, calldataload(add(signature.offset, sub(signature.length, 2)))) for {} 1 {} { let l := add(0x42, c) // Total length of appended data (32 + 32 + c + 2). let o := add(signature.offset, sub(signature.length, l)) // Offset of appended data. mstore(0x00, 0x1901) // Store the "\x19\x01" prefix. calldatacopy(0x20, o, 0x40) // Copy the `APP_DOMAIN_SEPARATOR` and `contents` struct hash. // Use the `PersonalSign` workflow if the reconstructed hash doesn't match, // or if the appended data is invalid, i.e. // `appendedData.length > signature.length || contentsDescription.length == 0`. if or(xor(keccak256(0x1e, 0x42), hash), or(lt(signature.length, l), iszero(c))) { t := 0 // Set `t` to 0, denoting that we need to `hash = _hashTypedData(hash)`. mstore(t, _PERSONAL_SIGN_TYPEHASH) mstore(0x20, hash) // Store the `prefixed`. hash := keccak256(t, 0x40) // Compute the `PersonalSign` struct hash. break } // Else, use the `TypedDataSign` workflow. // `TypedDataSign({ContentsName} contents,string name,...){ContentsType}`. mstore(m, "TypedDataSign(") // Store the start of `TypedDataSign`'s type encoding. let p := add(m, 0x0e) // Advance 14 bytes to skip "TypedDataSign(". calldatacopy(p, add(o, 0x40), c) // Copy `contentsName`, optimistically. mstore(add(p, c), 40) // Store a '(' after the end. if iszero(eq(byte(0, mload(sub(add(p, c), 1))), 41)) { let e := 0 // Length of `contentsName` in explicit mode. for { let q := sub(add(p, c), 1) } 1 {} { e := add(e, 1) // Scan backwards until we encounter a ')'. if iszero(gt(lt(e, c), eq(byte(0, mload(sub(q, e))), 41))) { break } } c := sub(c, e) // Truncate `contentsDescription` to `contentsType`. calldatacopy(p, add(add(o, 0x40), c), e) // Copy `contentsName`. mstore8(add(p, e), 40) // Store a '(' exactly right after the end. } // `d & 1 == 1` means that `contentsName` is invalid. let d := shr(byte(0, mload(p)), 0x7fffffe000000000000010000000000) // Starts with `[a-z(]`. // Advance `p` until we encounter '('. for {} iszero(eq(byte(0, mload(p)), 40)) { p := add(p, 1) } { d := or(shr(byte(0, mload(p)), 0x120100000001), d) // Has a byte in ", )\x00". } mstore(p, " contents,string name,string") // Store the rest of the encoding. mstore(add(p, 0x1c), " version,uint256 chainId,address") mstore(add(p, 0x3c), " verifyingContract,bytes32 salt)") p := add(p, 0x5c) calldatacopy(p, add(o, 0x40), c) // Copy `contentsType`. // Fill in the missing fields of the `TypedDataSign`. calldatacopy(t, o, 0x40) // Copy the `contents` struct hash to `add(t, 0x20)`. mstore(t, keccak256(m, sub(add(p, c), m))) // Store `typedDataSignTypehash`. // The "\x19\x01" prefix is already at 0x00. // `APP_DOMAIN_SEPARATOR` is already at 0x20. mstore(0x40, keccak256(t, 0xe0)) // `hashStruct(typedDataSign)`. // Compute the final hash, corrupted if `contentsName` is invalid. hash := keccak256(0x1e, add(0x42, and(1, d))) signature.length := sub(signature.length, l) // Truncate the signature. break } mstore(0x40, m) // Restore the free memory pointer. } if (t == uint256(0)) hash = _hashTypedDataForAccount(msg.sender, hash); // `PersonalSign` workflow. result = _erc1271IsValidSignatureNowCalldata(hash, signature); } /// @dev Performs the signature validation without nested EIP-712 to allow for easy sign ins. /// This function must always return false or revert if called on-chain. function _erc1271IsValidSignatureViaRPC(bytes32 hash, bytes calldata signature) internal view virtual returns (bool result) { // Non-zero gasprice is a heuristic to check if a call is on-chain, // but we can't fully depend on it because it can be manipulated. // See: https://x.com/NoahCitron/status/1580359718341484544 if (tx.gasprice == uint256(0)) { /// @solidity memory-safe-assembly assembly { mstore(gasprice(), gasprice()) // See: https://gist.github.com/Vectorized/3c9b63524d57492b265454f62d895f71 let b := 0x000000000000378eDCD5B5B0A24f5342d8C10485 // Basefee contract, pop(staticcall(0xffff, b, codesize(), gasprice(), gasprice(), 0x20)) // If `gasprice < basefee`, the call cannot be on-chain, and we can skip the gas burn. if iszero(mload(gasprice())) { let m := mload(0x40) // Cache the free memory pointer. mstore(gasprice(), 0x1626ba7e) // `isValidSignature(bytes32,bytes)`. mstore(0x20, b) // Recycle `b` to denote if we need to burn gas. mstore(0x40, 0x40) let gasToBurn := or(add(0xffff, gaslimit()), gaslimit()) // Burns gas computationally efficiently. Also, requires that `gas > gasToBurn`. if or(eq(hash, b), lt(gas(), gasToBurn)) { invalid() } // Make a call to this with `b`, efficiently burning the gas provided. // No valid transaction can consume more than the gaslimit. // See: https://ethereum.github.io/yellowpaper/paper.pdf // Most RPCs perform calls with a gas budget greater than the gaslimit. pop(staticcall(gasToBurn, address(), 0x1c, 0x64, gasprice(), gasprice())) mstore(0x40, m) // Restore the free memory pointer. } } result = _erc1271IsValidSignatureNowCalldata(hash, signature); } } /// @notice Hashes typed data according to eip-712 /// Uses account's domain separator /// @param account the smart account, who's domain separator will be used /// @param structHash the typed data struct hash function _hashTypedDataForAccount(address account, bytes32 structHash) private view returns (bytes32 digest) { ( /*bytes1 fields*/, string memory name, string memory version, uint256 chainId, address verifyingContract, /*bytes32 salt*/, /*uint256[] memory extensions*/ ) = IERC5267(account).eip712Domain(); /// @solidity memory-safe-assembly assembly { //Rebuild domain separator out of 712 domain let m := mload(0x40) // Load the free memory pointer. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), keccak256(add(name, 0x20), mload(name))) // Name hash. mstore(add(m, 0x40), keccak256(add(version, 0x20), mload(version))) // Version hash. mstore(add(m, 0x60), chainId) mstore(add(m, 0x80), verifyingContract) digest := keccak256(m, 0xa0) //domain separator // Hash typed data mstore(0x00, 0x1901000000000000) // Store "\x19\x01". mstore(0x1a, digest) // Store the domain separator. mstore(0x3a, structHash) // Store the struct hash. digest := keccak256(0x18, 0x42) // Restore the part of the free memory slot that was overwritten. mstore(0x3a, 0) } } /// @dev Backwards compatibility stuff /// For automatic detection that the smart account supports the nested EIP-712 workflow. /// By default, it returns `bytes32(bytes4(keccak256("supportsNestedTypedDataSign()")))`, /// denoting support for the default behavior, as implemented in /// `_erc1271IsValidSignatureViaNestedEIP712`, which is called in `isValidSignature`. /// Future extensions should return a different non-zero `result` to denote different behavior. /// This method intentionally returns bytes32 to allow freedom for future extensions. function supportsNestedTypedDataSign() public view virtual returns (bytes32 result) { result = bytes4(0xd620c85a); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; bytes3 constant SIG_TYPE_MEE_FLOW = 0x177eee; bytes4 constant SIG_TYPE_SIMPLE = 0x177eee00; bytes4 constant SIG_TYPE_ON_CHAIN = 0x177eee01; bytes4 constant SIG_TYPE_ERC20_PERMIT = 0x177eee02; // ...other sig types: ERC-7683, Permit2, etc bytes4 constant EIP1271_SUCCESS = 0x1626ba7e; bytes4 constant EIP1271_FAILED = 0xffffffff; uint256 constant MODULE_TYPE_STATELESS_VALIDATOR = 7; bytes4 constant NODE_PM_MODE_USER = 0x170de000; // refund goes to the user bytes4 constant NODE_PM_MODE_DAPP = 0x170de001; // refund goes to the dApp bytes4 constant NODE_PM_MODE_KEEP = 0x170de002; // no refund as node sponsored bytes4 constant NODE_PM_PREMIUM_PERCENT = 0x9ee4ce00; // premium percentage bytes4 constant NODE_PM_PREMIUM_FIXED = 0x9ee4ce01; // fixed premium
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import {MerkleProof} from "openzeppelin/utils/cryptography/MerkleProof.sol"; import {EcdsaLib} from "../util/EcdsaLib.sol"; import {MEEUserOpHashLib} from "../util/MEEUserOpHashLib.sol"; import {IERC20Permit} from "openzeppelin/token/ERC20/extensions/IERC20Permit.sol"; import {IERC20} from "openzeppelin/token/ERC20/IERC20.sol"; import "account-abstraction/core/Helpers.sol"; /** * @dev Library to validate the signature for MEE ERC-2612 Permit mode * This is the mode where superTx hash is pasted into deadline field of the ERC-2612 Permit * So the whole permit is signed along with the superTx hash * For more details see Fusion docs: * - https://ethresear.ch/t/fusion-module-7702-alternative-with-no-protocol-changes/20949 * - https://docs.biconomy.io/explained/eoa#fusion-module * * @dev Important: since ERC20 permit token knows nothing about the MEE, it will treat the superTx hash as a deadline: * - if (very unlikely) the superTx hash being converted to uint256 is a timestamp in the past, the permit will fail * - the deadline with most superTx hashes will be very far in the future * * @dev Since at this point bytes32 superTx hash is a blind hash, users and wallets should pay attention if * the permit2 deadline field does not make sense as the timestamp. In this case, it can be a sign of a * phishing attempt (injecting super txn hash as the deadline) and the user should not sign the permit. * This is going to be mitigated in the future by making superTx hash a EIP-712 hash. */ bytes32 constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); struct DecodedErc20PermitSig { IERC20Permit token; address spender; bytes32 domainSeparator; uint256 amount; uint256 nonce; bool isPermitTx; bytes32 superTxHash; uint48 lowerBoundTimestamp; uint48 upperBoundTimestamp; uint8 v; bytes32 r; bytes32 s; bytes32[] proof; } struct DecodedErc20PermitSigShort { address spender; bytes32 domainSeparator; uint256 amount; uint256 nonce; bytes32 superTxHash; uint8 v; bytes32 r; bytes32 s; bytes32[] proof; } library PermitValidatorLib { error PermitFailed(); uint8 constant EIP_155_MIN_V_VALUE = 37; using MessageHashUtils for bytes32; /** * This function parses the given userOpSignature into a DecodedErc20PermitSig data structure. * * Once parsed, the function will check for two conditions: * 1. is the userOp part of the merkle tree * 2. is the recovered message signer equal to the expected signer? * * NOTES: This function will revert if either of following is met: * 1. the userOpSignature couldn't be abi.decoded into a valid DecodedErc20PermitSig struct as defined in this contract * 2. userOp is not part of the merkle tree * 3. recovered Permit message signer wasn't equal to the expected signer * * The function will also perform the Permit approval on the given token in case the * isPermitTx flag was set to true in the decoded signature struct. * * @param userOpHash UserOp hash being validated. * @param parsedSignature Signature provided as the userOp.signature parameter (minus the prepended tx type byte). * @param expectedSigner Signer expected to be recovered when decoding the ERC20OPermit signature. */ function validateUserOp(bytes32 userOpHash, bytes calldata parsedSignature, address expectedSigner) internal returns (uint256) { DecodedErc20PermitSig memory decodedSig = _decodeFullPermitSig(parsedSignature); bytes32 meeUserOpHash = MEEUserOpHashLib.getMEEUserOpHash( userOpHash, decodedSig.lowerBoundTimestamp, decodedSig.upperBoundTimestamp ); if ( !EcdsaLib.isValidSignature( expectedSigner, _getSignedDataHash(expectedSigner, decodedSig), abi.encodePacked(decodedSig.r, decodedSig.s, uint8(decodedSig.v)) ) ) { return SIG_VALIDATION_FAILED; } if (!MerkleProof.verify(decodedSig.proof, decodedSig.superTxHash, meeUserOpHash)) { return SIG_VALIDATION_FAILED; } if (decodedSig.isPermitTx) { try decodedSig.token.permit( expectedSigner, decodedSig.spender, decodedSig.amount, uint256(decodedSig.superTxHash), uint8(decodedSig.v), decodedSig.r, decodedSig.s ) { // all good } catch { // check if by some reason this permit was already successfully used (and not spent yet) if (IERC20(address(decodedSig.token)).allowance(expectedSigner, decodedSig.spender) < decodedSig.amount) { // if the above expectationis not true, revert revert PermitFailed(); } } } return _packValidationData(false, decodedSig.upperBoundTimestamp, decodedSig.lowerBoundTimestamp); } function validateSignatureForOwner(address expectedSigner, bytes32 dataHash, bytes calldata parsedSignature) internal view returns (bool) { DecodedErc20PermitSigShort calldata decodedSig = _decodeShortPermitSig(parsedSignature); if ( !EcdsaLib.isValidSignature( expectedSigner, _getSignedDataHash(expectedSigner, decodedSig), abi.encodePacked(decodedSig.r, decodedSig.s, uint8(decodedSig.v)) ) ) { return false; } if (!MerkleProof.verify(decodedSig.proof, decodedSig.superTxHash, dataHash)) { return false; } return true; } function _decodeFullPermitSig(bytes calldata parsedSignature) private pure returns (DecodedErc20PermitSig calldata decodedSig) { assembly { decodedSig := add(parsedSignature.offset, 0x20) } } function _decodeShortPermitSig(bytes calldata parsedSignature) private pure returns (DecodedErc20PermitSigShort calldata) { DecodedErc20PermitSigShort calldata decodedSig; assembly { decodedSig := add(parsedSignature.offset, 0x20) } return decodedSig; } function _getSignedDataHash(address expectedSigner, DecodedErc20PermitSig memory decodedSig) private pure returns (bytes32) { uint256 deadline = uint256(decodedSig.superTxHash); bytes32 structHash = keccak256( abi.encode( PERMIT_TYPEHASH, expectedSigner, decodedSig.spender, decodedSig.amount, decodedSig.nonce, deadline ) ); return _hashTypedData(structHash, decodedSig.domainSeparator); } function _getSignedDataHash(address expectedSigner, DecodedErc20PermitSigShort memory decodedSig) private pure returns (bytes32) { uint256 deadline = uint256(decodedSig.superTxHash); bytes32 structHash = keccak256( abi.encode( PERMIT_TYPEHASH, expectedSigner, decodedSig.spender, decodedSig.amount, decodedSig.nonce, deadline ) ); return _hashTypedData(structHash, decodedSig.domainSeparator); } function _hashTypedData(bytes32 structHash, bytes32 domainSeparator) private pure returns (bytes32) { return MessageHashUtils.toTypedDataHash(domainSeparator, structHash); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; import {MerkleProof} from "openzeppelin/utils/cryptography/MerkleProof.sol"; import {RLPReader as RLPDecoder} from "rlp-reader/RLPReader.sol"; import {RLPEncoder} from "../rlp/RLPEncoder.sol"; import {MEEUserOpHashLib} from "../util/MEEUserOpHashLib.sol"; import {EcdsaLib} from "../util/EcdsaLib.sol"; import {BytesLib} from "byteslib/BytesLib.sol"; import "account-abstraction/core/Helpers.sol"; /** * @dev Library to validate the signature for MEE on-chain Txn mode * This is the mode where superTx hash is appended to a regular txn (legacy or 1559) calldata * Type 1 (EIP-2930) transactions are not supported. * The whole txn is signed along with the superTx hash * Txn is executed prior to a superTx, so it can pass some funds from the EOA to the smart account * For more details see Fusion docs: * - https://ethresear.ch/t/fusion-module-7702-alternative-with-no-protocol-changes/20949 * - https://docs.biconomy.io/explained/eoa#fusion-module * @dev Some smart contracts may not be able to consume the txn with bytes32 appended to the calldata. * However this is very small subset. One of the cases when it can happen is when the smart contract * is has separate receive() and fallback() functions. Then if a txn is a value transfer, it will * be expected to be consumed by the receive() function. However, if there's bytes32 appended to the calldata, * it will be consumed by the fallback() function which may not be expected. In this case, the provided * contracts/forwarder/Forwarder.sol can be used to 'clear' the bytes32 from the calldata. * @dev In theory, the last 32 bytes of calldata from any transaction by the EOA can be interpreted as * a superTx hash. Even if it was not assumed. This introduces the potential risk of phishing attacks * where the user may unknowingly sign a transaction where the last 32 bytes of the calldata end up * being a superTx hash. However, it is not easy to craft a txn that makes sense for a user and allows * arbitrary bytes32 as last 32 bytes. Thus, wallets and users should be aware of this potential risk * and should not sign txns where the last 32 bytes of the calldata do not belong to the function arguments * and are just appended at the end. */ library TxValidatorLib { uint8 constant LEGACY_TX_TYPE = 0x00; uint8 constant EIP1559_TX_TYPE = 0x02; uint8 constant EIP_155_MIN_V_VALUE = 37; uint8 constant HASH_BYTE_SIZE = 32; uint8 constant TIMESTAMP_BYTE_SIZE = 6; uint8 constant PROOF_ITEM_BYTE_SIZE = 32; uint8 constant ITX_HASH_BYTE_SIZE = 32; using RLPDecoder for RLPDecoder.RLPItem; using RLPDecoder for bytes; using RLPEncoder for uint256; using BytesLib for bytes; struct TxData { uint8 txType; uint8 v; bytes32 r; bytes32 s; bytes32 utxHash; bytes32 superTxHash; bytes32[] proof; uint48 lowerBoundTimestamp; uint48 upperBoundTimestamp; } // To save a bit of gas, not pass timestamps where not needed struct TxDataShort { uint8 txType; uint8 v; bytes32 r; bytes32 s; bytes32 utxHash; bytes32 superTxHash; bytes32[] proof; } struct TxParams { uint256 v; bytes32 r; bytes32 s; bytes callData; } /** * This function parses the given userOpSignature into a valid fully signed EVM transaction. * Once parsed, the function will check for three conditions: * 1. is the userOp part of the superTX merkle tree * 2. is the recovered tx signer equal to the expected signer? * 3. is the given UserOp a part of the merkle tree * * If all the conditions are met - outside contract can be sure that the expected signer has indeed * approved the given hash by performing given on-chain transaction. * * NOTES: This function will revert if either of following is met: * 1. the userOpSignature couldn't be parsed to a valid fully signed EVM transaction * 2. hash couldn't be extracted from the tx.data * 3. extracted hash wasn't equal to the provided expected hash * 4. recovered signer wasn't equal to the expected signer * * @param userOpHash UserOp hash being validated. * @param parsedSignature Signature provided as the userOp.signature parameter (minus the prepended tx type byte). * Expecting to receive fully signed serialized EVM transaction here of type 0x00 (LEGACY) * or 0x02 (EIP1556). * For LEGACY tx type the "0x00" prefix has to be added manually while the EIP1559 tx type * already contains 0x02 prefix. * @param expectedSigner Expected EOA signer of the given EVM transaction => superTX. */ function validateUserOp(bytes32 userOpHash, bytes calldata parsedSignature, address expectedSigner) internal view returns (uint256) { TxData memory decodedTx = decodeTx(parsedSignature); bytes32 meeUserOpHash = MEEUserOpHashLib.getMEEUserOpHash(userOpHash, decodedTx.lowerBoundTimestamp, decodedTx.upperBoundTimestamp); bytes memory signature = abi.encodePacked(decodedTx.r, decodedTx.s, decodedTx.v); if (!EcdsaLib.isValidSignature(expectedSigner, decodedTx.utxHash, signature)) { return SIG_VALIDATION_FAILED; } if (!MerkleProof.verify(decodedTx.proof, decodedTx.superTxHash, meeUserOpHash)) { return SIG_VALIDATION_FAILED; } return _packValidationData(false, decodedTx.upperBoundTimestamp, decodedTx.lowerBoundTimestamp); } /** * @dev validate the signature for the owner of the superTx * used fot the 1271 flow and for the stateless validators (erc7579 module type 7) * @param expectedSigner the expected signer of the superTx * @param dataHash the hash of the data to be signed * @param parsedSignature the signature to be validated * @return true if the signature is valid, false otherwise */ function validateSignatureForOwner(address expectedSigner, bytes32 dataHash, bytes calldata parsedSignature) internal view returns (bool) { TxDataShort memory decodedTx = decodeTxShort(parsedSignature); bytes memory signature = abi.encodePacked(decodedTx.r, decodedTx.s, decodedTx.v); if (!EcdsaLib.isValidSignature(expectedSigner, decodedTx.utxHash, signature)) { return false; } if (!MerkleProof.verify(decodedTx.proof, decodedTx.superTxHash, dataHash)) { return false; } return true; } function decodeTx(bytes calldata self) internal pure returns (TxData memory) { uint8 txType = uint8(self[0]); //first byte is tx type uint48 lowerBoundTimestamp = uint48(bytes6((self[self.length - 2 * TIMESTAMP_BYTE_SIZE:self.length - TIMESTAMP_BYTE_SIZE]))); uint48 upperBoundTimestamp = uint48(bytes6(self[self.length - TIMESTAMP_BYTE_SIZE:])); uint8 proofItemsCount = uint8(self[self.length - 2 * TIMESTAMP_BYTE_SIZE - 1]); uint256 appendedDataLen = (uint256(proofItemsCount) * PROOF_ITEM_BYTE_SIZE + 1) + 2 * TIMESTAMP_BYTE_SIZE; bytes calldata rlpEncodedTx = self[1:self.length - appendedDataLen]; RLPDecoder.RLPItem memory parsedRlpEncodedTx = rlpEncodedTx.toRlpItem(); RLPDecoder.RLPItem[] memory parsedRlpEncodedTxItems = parsedRlpEncodedTx.toList(); TxParams memory params = extractParams(txType, parsedRlpEncodedTxItems); return TxData({ txType: txType, v: _adjustV(params.v), r: params.r, s: params.s, utxHash: calculateUnsignedTxHash(txType, rlpEncodedTx, parsedRlpEncodedTx.payloadLen(), params.v, params.r, params.s), superTxHash: extractAppendedHash(params.callData), proof: extractProof(self, proofItemsCount), lowerBoundTimestamp: lowerBoundTimestamp, upperBoundTimestamp: upperBoundTimestamp }); } function decodeTxShort(bytes calldata self) internal pure returns (TxDataShort memory) { uint8 txType = uint8(self[0]); //first byte is tx type uint8 proofItemsCount = uint8(self[self.length - 1]); uint256 appendedDataLen = (uint256(proofItemsCount) * PROOF_ITEM_BYTE_SIZE + 1); bytes calldata rlpEncodedTx = self[1:self.length - appendedDataLen]; RLPDecoder.RLPItem memory parsedRlpEncodedTx = rlpEncodedTx.toRlpItem(); RLPDecoder.RLPItem[] memory parsedRlpEncodedTxItems = parsedRlpEncodedTx.toList(); TxParams memory params = extractParams(txType, parsedRlpEncodedTxItems); return TxDataShort({ txType: txType, v: _adjustV(params.v), r: params.r, s: params.s, utxHash: calculateUnsignedTxHash(txType, rlpEncodedTx, parsedRlpEncodedTx.payloadLen(), params.v, params.r, params.s), superTxHash: extractAppendedHash(params.callData), proof: extractProofShort(self, proofItemsCount) }); } function extractParams(uint8 txType, RLPDecoder.RLPItem[] memory items) private pure returns (TxParams memory params) { uint8 dataPos; uint8 vPos; uint8 rPos; uint8 sPos; if (txType == LEGACY_TX_TYPE) { dataPos = 5; vPos = 6; rPos = 7; sPos = 8; } else if (txType == EIP1559_TX_TYPE) { dataPos = 7; vPos = 9; rPos = 10; sPos = 11; } else { revert("TxValidatorLib:: unsupported evm tx type"); } return TxParams( items[vPos].toUint(), bytes32(items[rPos].toUint()), bytes32(items[sPos].toUint()), items[dataPos].toBytes() ); } function extractAppendedHash(bytes memory callData) private pure returns (bytes32 iTxHash) { if (callData.length < ITX_HASH_BYTE_SIZE) revert("TxDecoder:: callData length too short"); iTxHash = bytes32(callData.slice(callData.length - ITX_HASH_BYTE_SIZE, ITX_HASH_BYTE_SIZE)); } function extractProof(bytes calldata signedTx, uint8 proofItemsCount) private pure returns (bytes32[] memory proof) { proof = new bytes32[](proofItemsCount); uint256 pos = signedTx.length - 2 * TIMESTAMP_BYTE_SIZE - 1; for (proofItemsCount; proofItemsCount > 0; proofItemsCount--) { proof[proofItemsCount - 1] = bytes32(signedTx[pos - PROOF_ITEM_BYTE_SIZE:pos]); pos = pos - PROOF_ITEM_BYTE_SIZE; } } function extractProofShort(bytes calldata signedTx, uint8 proofItemsCount) private pure returns (bytes32[] memory proof) { proof = new bytes32[](proofItemsCount); uint256 pos = signedTx.length - 1; for (proofItemsCount; proofItemsCount > 0; proofItemsCount--) { proof[proofItemsCount - 1] = bytes32(signedTx[pos - PROOF_ITEM_BYTE_SIZE:pos]); pos = pos - PROOF_ITEM_BYTE_SIZE; } } function calculateUnsignedTxHash( uint8 txType, bytes memory rlpEncodedTx, uint256 rlpEncodedTxPayloadLen, uint256 v, bytes32 r, bytes32 s ) private pure returns (bytes32 hash) { uint256 totalSignatureSize = uint256(r).encodeUint().length + uint256(s).encodeUint().length + v.encodeUint().length; uint256 totalPrefixSize = rlpEncodedTx.length - rlpEncodedTxPayloadLen; bytes memory rlpEncodedTxNoSigAndPrefix = rlpEncodedTx.slice(totalPrefixSize, rlpEncodedTx.length - totalSignatureSize - totalPrefixSize); if (txType == EIP1559_TX_TYPE) { return keccak256(abi.encodePacked(txType, prependRlpContentSize(rlpEncodedTxNoSigAndPrefix, ""))); } else if (txType == LEGACY_TX_TYPE) { if (v >= EIP_155_MIN_V_VALUE) { return keccak256( prependRlpContentSize( rlpEncodedTxNoSigAndPrefix, abi.encodePacked( uint256(_extractChainIdFromV(v)).encodeUint(), uint256(0).encodeUint(), uint256(0).encodeUint() ) ) ); } else { return keccak256(prependRlpContentSize(rlpEncodedTxNoSigAndPrefix, "")); } } else { revert("TxValidatorLib:: unsupported tx type"); } } function prependRlpContentSize(bytes memory content, bytes memory extraData) public pure returns (bytes memory) { bytes memory combinedContent = abi.encodePacked(content, extraData); return abi.encodePacked(combinedContent.length.encodeLength(RLPDecoder.LIST_SHORT_START), combinedContent); } function _adjustV(uint256 v) internal pure returns (uint8) { if (v >= EIP_155_MIN_V_VALUE) { return uint8((v - 2 * _extractChainIdFromV(v) - 35) + 27); } else if (v <= 1) { return uint8(v + 27); } else { return uint8(v); } } function _extractChainIdFromV(uint256 v) internal pure returns (uint256 chainId) { chainId = (v - 35) / 2; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; import {MerkleProof} from "openzeppelin/utils/cryptography/MerkleProof.sol"; import {EcdsaLib} from "../util/EcdsaLib.sol"; import {MEEUserOpHashLib} from "../util/MEEUserOpHashLib.sol"; import "account-abstraction/core/Helpers.sol"; /** * @dev Library to validate the signature for MEE Simple mode * In this mode, Fusion is not involved and just the superTx hash is signed */ library SimpleValidatorLib { /** * This function parses the given userOpSignature into a Supertransaction signature * * Once parsed, the function will check for two conditions: * 1. is the root supertransaction hash signed by the account owner's EOA * 2. is the userOp actually a part of the given supertransaction * by checking the leaf based on this userOpHash is a part of the merkle tree represented by root hash = superTxHash * * If both conditions are met - outside contract can be sure that the expected signer has indeed * approved the given userOp - and the userOp is successfully validate. * * @param userOpHash UserOp hash being validated. * @param signatureData Signature provided as the userOp.signature parameter (minus the prepended tx type byte). * @param expectedSigner Signer expected to be recovered when decoding the ERC20OPermit signature. */ function validateUserOp(bytes32 userOpHash, bytes calldata signatureData, address expectedSigner) internal view returns (uint256) { bytes32 superTxHash; uint48 lowerBoundTimestamp; uint48 upperBoundTimestamp; bytes32[] calldata proof; bytes calldata secp256k1Signature; assembly { superTxHash := calldataload(signatureData.offset) lowerBoundTimestamp := calldataload(add(signatureData.offset, 0x20)) upperBoundTimestamp := calldataload(add(signatureData.offset, 0x40)) let u := calldataload(add(signatureData.offset, 0x60)) let s := add(signatureData.offset, u) proof.offset := add(s, 0x20) proof.length := calldataload(s) u := mul(proof.length, 0x20) s := add(proof.offset, u) secp256k1Signature.offset := add(s, 0x20) secp256k1Signature.length := calldataload(s) } bytes32 leaf = MEEUserOpHashLib.getMEEUserOpHash(userOpHash, lowerBoundTimestamp, upperBoundTimestamp); if (!EcdsaLib.isValidSignature(expectedSigner, superTxHash, secp256k1Signature)) { return SIG_VALIDATION_FAILED; } if (!MerkleProof.verify(proof, superTxHash, leaf)) { return SIG_VALIDATION_FAILED; } return _packValidationData(false, upperBoundTimestamp, lowerBoundTimestamp); } /** * @notice Validates the signature against the expected signer (owner) * @param owner Signer expected to be recovered * @param dataHash data hash being validated. * @param signatureData Signature */ function validateSignatureForOwner(address owner, bytes32 dataHash, bytes calldata signatureData) internal view returns (bool) { bytes32 superTxHash; bytes32[] calldata proof; bytes calldata secp256k1Signature; assembly { superTxHash := calldataload(signatureData.offset) let u := calldataload(add(signatureData.offset, 0x20)) let s := add(signatureData.offset, u) proof.offset := add(s, 0x20) proof.length := calldataload(s) u := mul(proof.length, 0x20) s := add(proof.offset, u) secp256k1Signature.offset := add(s, 0x20) secp256k1Signature.length := calldataload(s) } if (!EcdsaLib.isValidSignature(owner, superTxHash, secp256k1Signature)) { return false; } if (!MerkleProof.verify(proof, superTxHash, dataHash)) { return false; } return true; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; import "account-abstraction/interfaces/PackedUserOperation.sol"; import "account-abstraction/core/Helpers.sol"; import "../util/EcdsaLib.sol"; library NoMeeFlowLib { /** * Standard userOp validator - validates by simply checking if the userOpHash was signed by the account's EOA owner. * * @param userOpHash userOpHash being validated. * @param parsedSignature Signature * @param expectedSigner Signer expected to be recovered */ function validateUserOp(bytes32 userOpHash, bytes memory parsedSignature, address expectedSigner) internal view returns (uint256) { if (!EcdsaLib.isValidSignature(expectedSigner, userOpHash, parsedSignature)) { return SIG_VALIDATION_FAILED; } return SIG_VALIDATION_SUCCESS; } /** * @notice Validates the signature against the expected signer (owner) * @param expectedSigner Signer expected to be recovered * @param hash Hash of the userOp * @param parsedSignature Signature */ function validateSignatureForOwner(address expectedSigner, bytes32 hash, bytes memory parsedSignature) internal view returns (bool) { return EcdsaLib.isValidSignature(expectedSigner, hash, parsedSignature); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.27; import {ECDSA} from "solady/utils/ECDSA.sol"; library EcdsaLib { using ECDSA for bytes32; /** * @dev Solady ECDSA does not revert on incorrect signatures. * Instead, it returns address(0) as the recovered address. * Make sure to never pass address(0) as expectedSigner to this function. */ function isValidSignature(address expectedSigner, bytes32 hash, bytes memory signature) internal view returns (bool) { if (hash.tryRecover(signature) == expectedSigner) return true; if (hash.toEthSignedMessageHash().tryRecover(signature) == expectedSigner) return true; return false; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * Dynamic arrays associated with an account address as per ERC-7562/ERC-4337 * @author filio.eth (Biconomy), zeroknots.eth (rhinestone) */ library AssociatedArrayLib { using AssociatedArrayLib for *; error AssociatedArray_OutOfBounds(uint256 index); struct Array { uint256 _spacer; } function _slot(Array storage s, address account) private pure returns (bytes32 __slot) { assembly { mstore(0x00, account) mstore(0x20, s.slot) __slot := keccak256(0x00, 0x40) } } function _length(Array storage s, address account) private view returns (uint256 __length) { bytes32 slot = _slot(s, account); assembly { __length := sload(slot) } } function _get(Array storage s, address account, uint256 index) private view returns (bytes32 value) { return _get(_slot(s, account), index); } function _get(bytes32 slot, uint256 index) private view returns (bytes32 value) { assembly { //if (index >= _length(s, account)) revert AssociatedArray_OutOfBounds(index); if iszero(lt(index, sload(slot))) { mstore(0, 0x8277484f) // `AssociatedArray_OutOfBounds(uint256)` mstore(0x20, index) revert(0x1c, 0x24) } value := sload(add(slot, mul(0x20, add(index, 1)))) } } function _getAll(Array storage s, address account) private view returns (bytes32[] memory values) { bytes32 slot = _slot(s, account); uint256 __length; assembly { __length := sload(slot) } values = new bytes32[](__length); for (uint256 i; i < __length; i++) { values[i] = _get(slot, i); } } // inefficient. complexity = O(n) // use with caution // in case of large arrays, consider using EnumerableSet4337 instead function _contains(Array storage s, address account, bytes32 value) private view returns (bool) { bytes32 slot = _slot(s, account); uint256 __length; assembly { __length := sload(slot) } for (uint256 i; i < __length; i++) { if (_get(slot, i) == value) { return true; } } return false; } function _set(Array storage s, address account, uint256 index, bytes32 value) private { _set(_slot(s, account), index, value); } function _set(bytes32 slot, uint256 index, bytes32 value) private { assembly { //if (index >= _length(s, account)) revert AssociatedArray_OutOfBounds(index); if iszero(lt(index, sload(slot))) { mstore(0, 0x8277484f) // `AssociatedArray_OutOfBounds(uint256)` mstore(0x20, index) revert(0x1c, 0x24) } sstore(add(slot, mul(0x20, add(index, 1))), value) } } function _push(Array storage s, address account, bytes32 value) private { bytes32 slot = _slot(s, account); assembly { // load length (stored @ slot), add 1 to it => index. // mul index by 0x20 and add it to orig slot to get the next free slot let index := add(sload(slot), 1) sstore(add(slot, mul(0x20, index)), value) sstore(slot, index) //increment length by 1 } } function _pop(Array storage s, address account) private { bytes32 slot = _slot(s, account); uint256 __length; assembly { __length := sload(slot) } if (__length == 0) return; _set(slot, __length - 1, 0); assembly { sstore(slot, sub(__length, 1)) } } function _remove(Array storage s, address account, uint256 index) private { bytes32 slot = _slot(s, account); uint256 __length; assembly { __length := sload(slot) if iszero(lt(index, __length)) { mstore(0, 0x8277484f) // `AssociatedArray_OutOfBounds(uint256)` mstore(0x20, index) revert(0x1c, 0x24) } } _set(slot, index, _get(s, account, __length - 1)); assembly { // clear the last slot // this is the 'unchecked' version of _set(slot, __length - 1, 0) // as we use length-1 as index, so the check is excessive. // also removes extra -1 and +1 operations sstore(add(slot, mul(0x20, __length)), 0) // store new length sstore(slot, sub(__length, 1)) } } struct Bytes32Array { Array _inner; } function length(Bytes32Array storage s, address account) internal view returns (uint256) { return _length(s._inner, account); } function get(Bytes32Array storage s, address account, uint256 index) internal view returns (bytes32) { return _get(s._inner, account, index); } function getAll(Bytes32Array storage s, address account) internal view returns (bytes32[] memory) { return _getAll(s._inner, account); } function contains(Bytes32Array storage s, address account, bytes32 value) internal view returns (bool) { return _contains(s._inner, account, value); } function add(Bytes32Array storage s, address account, bytes32 value) internal { if (!_contains(s._inner, account, value)) { _push(s._inner, account, value); } } function set(Bytes32Array storage s, address account, uint256 index, bytes32 value) internal { _set(s._inner, account, index, value); } function push(Bytes32Array storage s, address account, bytes32 value) internal { _push(s._inner, account, value); } function pop(Bytes32Array storage s, address account) internal { _pop(s._inner, account); } function remove(Bytes32Array storage s, address account, uint256 index) internal { _remove(s._inner, account, index); } struct AddressArray { Array _inner; } function length(AddressArray storage s, address account) internal view returns (uint256) { return _length(s._inner, account); } function get(AddressArray storage s, address account, uint256 index) internal view returns (address) { return address(uint160(uint256(_get(s._inner, account, index)))); } function getAll(AddressArray storage s, address account) internal view returns (address[] memory) { bytes32[] memory bytes32Array = _getAll(s._inner, account); address[] memory addressArray; /// @solidity memory-safe-assembly assembly { addressArray := bytes32Array } return addressArray; } function contains(AddressArray storage s, address account, address value) internal view returns (bool) { return _contains(s._inner, account, bytes32(uint256(uint160(value)))); } function add(AddressArray storage s, address account, address value) internal { if (!_contains(s._inner, account, bytes32(uint256(uint160(value))))) { _push(s._inner, account, bytes32(uint256(uint160(value)))); } } function set(AddressArray storage s, address account, uint256 index, address value) internal { _set(s._inner, account, index, bytes32(uint256(uint160(value)))); } function push(AddressArray storage s, address account, address value) internal { _push(s._inner, account, bytes32(uint256(uint160(value)))); } function pop(AddressArray storage s, address account) internal { _pop(s._inner, account); } function remove(AddressArray storage s, address account, uint256 index) internal { _remove(s._inner, account, index); } struct UintArray { Array _inner; } function length(UintArray storage s, address account) internal view returns (uint256) { return _length(s._inner, account); } function get(UintArray storage s, address account, uint256 index) internal view returns (uint256) { return uint256(_get(s._inner, account, index)); } function getAll(UintArray storage s, address account) internal view returns (uint256[] memory) { bytes32[] memory bytes32Array = _getAll(s._inner, account); uint256[] memory uintArray; /// @solidity memory-safe-assembly assembly { uintArray := bytes32Array } return uintArray; } function contains(UintArray storage s, address account, uint256 value) internal view returns (bool) { return _contains(s._inner, account, bytes32(value)); } function add(UintArray storage s, address account, uint256 value) internal { if (!_contains(s._inner, account, bytes32(value))) { _push(s._inner, account, bytes32(value)); } } function set(UintArray storage s, address account, uint256 index, uint256 value) internal { _set(s._inner, account, index, bytes32(value)); } function push(UintArray storage s, address account, uint256 value) internal { _push(s._inner, account, bytes32(value)); } function pop(UintArray storage s, address account) internal { _pop(s._inner, account); } function remove(UintArray storage s, address account, uint256 index) internal { _remove(s._inner, account, index); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.20; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. if (leavesLen + proofLen != totalHashes + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { if (proofPos != proofLen) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Sorts the pair (a, b) and hashes the result. */ function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: Unlicense /* * @title MEE UserOp Hash Lib * * @dev Calculates userOp hash for the new type of transaction - SuperTransaction (as a part of MEE stack) */ pragma solidity ^0.8.27; library MEEUserOpHashLib { /** * Calculates userOp hash. Almost works like a regular 4337 userOp hash with few fields added. * * @param userOpHash userOp hash to calculate the hash for * @param lowerBoundTimestamp lower bound timestamp set when constructing userOp * @param upperBoundTimestamp upper bound timestamp set when constructing userOp * Timestamps are used by the MEE node to schedule the execution of the userOps within the superTx */ function getMEEUserOpHash(bytes32 userOpHash, uint256 lowerBoundTimestamp, uint256 upperBoundTimestamp) internal pure returns (bytes32 meeUserOpHash) { meeUserOpHash = keccak256(bytes.concat(keccak256(abi.encode(userOpHash, lowerBoundTimestamp, upperBoundTimestamp)))); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; /* solhint-disable no-inline-assembly */ /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * must return this value in case of signature failure, instead of revert. */ uint256 constant SIG_VALIDATION_FAILED = 1; /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * return this value on success. */ uint256 constant SIG_VALIDATION_SUCCESS = 0; /** * Returned data from validateUserOp. * validateUserOp returns a uint256, which is created by `_packedValidationData` and * parsed by `_parseValidationData`. * @param aggregator - address(0) - The account validated the signature by itself. * address(1) - The account failed to validate the signature. * otherwise - This is an address of a signature aggregator that must * be used to validate the signature. * @param validAfter - This UserOp is valid only after this timestamp. * @param validaUntil - This UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } /** * Extract sigFailed, validAfter, validUntil. * Also convert zero validUntil to type(uint48).max. * @param validationData - The packed validation data. */ function _parseValidationData( uint256 validationData ) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } /** * Helper to pack the return value for validateUserOp. * @param data - The ValidationData to pack. */ function _packValidationData( ValidationData memory data ) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * Helper to pack the return value for validateUserOp, when not using an aggregator. * @param sigFailed - True for signature failure, false for success. * @param validUntil - Last timestamp this UserOperation is valid (or zero for infinite). * @param validAfter - First timestamp this UserOperation is valid. */ function _packValidationData( bool sigFailed, uint48 validUntil, uint48 validAfter ) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly ("memory-safe") { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } } /** * The minimum of two numbers. * @param a - First number. * @param b - Second number. */ function min(uint256 a, uint256 b) pure returns (uint256) { return a < b ? a : b; }
// SPDX-License-Identifier: Apache-2.0 /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns */ pragma solidity >=0.5.10 <0.9.0; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint256 len; uint256 memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint256 nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint256 ptr = self.nextPtr; uint256 itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint256 memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint256 ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param the RLP item. */ function rlpLen(RLPItem memory item) internal pure returns (uint256) { return item.len; } /* * @param the RLP item. * @return (memPtr, len) pair: location of the item's payload in memory. */ function payloadLocation(RLPItem memory item) internal pure returns (uint256, uint256) { uint256 offset = _payloadOffset(item.memPtr); uint256 memPtr = item.memPtr + offset; uint256 len = item.len - offset; // data length return (memPtr, len); } /* * @param the RLP item. */ function payloadLen(RLPItem memory item) internal pure returns (uint256) { (, uint256 len) = payloadLocation(item); return len; } /* * @param the RLP item containing the encoded list. */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint256 items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr); uint256 dataLen; for (uint256 i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } require(memPtr - item.memPtr == item.len); return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint256 memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /* * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory. * @return keccak256 hash of RLP encoded bytes. */ function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) { uint256 ptr = item.memPtr; uint256 len = item.len; bytes32 result; assembly { result := keccak256(ptr, len) } return result; } /* * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory. * @return keccak256 hash of the item payload. */ function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) { (uint256 memPtr, uint256 len) = payloadLocation(item); bytes32 result; assembly { result := keccak256(memPtr, len) } return result; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint256 ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte except "0x80" is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint256 result; uint256 memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } // SEE Github Issue #5. // Summary: Most commonly used RLP libraries (i.e Geth) will encode // "0" as "0x80" instead of as "0". We handle this edge case explicitly // here. if (result == 0 || result == STRING_SHORT_START) { return false; } else { return true; } } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(uint160(toUint(item))); } function toUint(RLPItem memory item) internal pure returns (uint256) { require(item.len > 0 && item.len <= 33); (uint256 memPtr, uint256 len) = payloadLocation(item); uint256 result; assembly { result := mload(memPtr) // shift to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint256) { // one byte prefix require(item.len == 33); uint256 result; uint256 memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); (uint256 memPtr, uint256 len) = payloadLocation(item); bytes memory result = new bytes(len); uint256 destPtr; assembly { destPtr := add(0x20, result) } copy(memPtr, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint256) { if (item.len == 0) return 0; uint256 count = 0; uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr); uint256 endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint256 memPtr) private pure returns (uint256) { uint256 itemLen; uint256 byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) { itemLen = 1; } else if (byte0 < STRING_LONG_START) { itemLen = byte0 - STRING_SHORT_START + 1; } else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint256 memPtr) private pure returns (uint256) { uint256 byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) { return 0; } else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) { return 1; } else if (byte0 < LIST_SHORT_START) { // being explicit return byte0 - (STRING_LONG_START - 1) + 1; } else { return byte0 - (LIST_LONG_START - 1) + 1; } } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint256 src, uint256 dest, uint256 len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } if (len > 0) { // left over bytes. Mask is used to remove unwanted bytes from the word uint256 mask = 256**(WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.27; // Had to keep it copypasted as the og lib https://github.com/bakaoh/solidity-rlp-encode has incompatible solc version import "byteslib/BytesLib.sol"; /** * @title RLPEncoder * @dev A simple RLP encoding library. * @author Bakaoh */ library RLPEncoder { using BytesLib for bytes; /* * Internal functions */ /** * @dev RLP encodes a byte string. * @param self The byte string to encode. * @return The RLP encoded string in bytes. */ function encodeBytes(bytes memory self) internal pure returns (bytes memory) { bytes memory encoded; if (self.length == 1 && uint8(self[0]) < 128) { encoded = self; } else { encoded = encodeLength(self.length, 128).concat(self); } return encoded; } /** * @dev RLP encodes a uint. * @param self The uint to encode. * @return The RLP encoded uint in bytes. */ function encodeUint(uint256 self) internal pure returns (bytes memory) { return encodeBytes(toBinary(self)); } /** * @dev Encode the first byte, followed by the `len` in binary form if `length` is more than 55. * @param self The length of the string or the payload. * @param offset 128 if item is string, 192 if item is list. * @return RLP encoded bytes. */ function encodeLength(uint256 self, uint256 offset) internal pure returns (bytes memory) { bytes memory encoded; if (self < 56) { encoded = new bytes(1); encoded[0] = bytes32(self + offset)[31]; } else { uint256 lenLen; uint256 i = 1; while (self / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes32(lenLen + offset + 55)[31]; for (i = 1; i <= lenLen; i++) { encoded[i] = bytes32((self / (256 ** (lenLen - i))) % 256)[31]; } } return encoded; } /* * Private functions */ /** * @dev Encode integer in big endian binary form with no leading zeroes. * @notice TODO: This should be optimized with assembly to save gas costs. * @param _x The integer to encode. * @return RLP encoded bytes. */ function toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = new bytes(32); assembly { mstore(add(b, 32), _x) } uint256 i; for (i = 0; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } }
// SPDX-License-Identifier: Unlicense /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.8.0 <0.9.0; library BytesLib { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { // We're using the unchecked block below because otherwise execution ends // with the native overflow error code. unchecked { require(_length + 31 >= _length, "slice_overflow"); } require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Gas optimized ECDSA wrapper. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol) /// /// @dev Note: /// - The recovery functions use the ecrecover precompile (0x1). /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure. /// This is for more safety by default. /// Use the `tryRecover` variants if you need to get the zero address back /// upon recovery failure instead. /// - As of Solady version 0.0.134, all `bytes signature` variants accept both /// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures. /// See: https://eips.ethereum.org/EIPS/eip-2098 /// This is for calldata efficiency on smart accounts prevalent on L2s. /// /// WARNING! Do NOT directly use signatures as unique identifiers: /// - The recovery operations do NOT check if a signature is non-malleable. /// - Use a nonce in the digest to prevent replay attacks on the same contract. /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts. /// EIP-712 also enables readable signing of typed data for better user safety. /// - If you need a unique hash from a signature, please use the `canonicalHash` functions. library ECDSA { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The order of the secp256k1 elliptic curve. uint256 internal constant N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141; /// @dev `N/2 + 1`. Used for checking the malleability of the signature. uint256 private constant _HALF_N_PLUS_1 = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The signature is invalid. error InvalidSignature(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RECOVERY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function recover(bytes32 hash, bytes memory signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } { switch mload(signature) case 64 { let vs := mload(add(signature, 0x40)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`. mstore(0x60, mload(add(signature, 0x40))) // `s`. } default { continue } mstore(0x00, hash) mstore(0x40, mload(add(signature, 0x20))) // `r`. result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if returndatasize() { break } } } } /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function recoverCalldata(bytes32 hash, bytes calldata signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } { switch signature.length case 64 { let vs := calldataload(add(signature.offset, 0x20)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, calldataload(signature.offset)) // `r`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`. calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`. } default { continue } mstore(0x00, hash) result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if returndatasize() { break } } } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the EIP-2098 short form signature defined by `r` and `vs`. function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, r) mstore(0x60, shr(1, shl(1, vs))) // `s`. result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the signature defined by `v`, `r`, `s`. function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, and(v, 0xff)) mstore(0x40, r) mstore(0x60, s) result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20)) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* TRY-RECOVER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // WARNING! // These functions will NOT revert upon recovery failure. // Instead, they will return the zero address upon recovery failure. // It is critical that the returned address is NEVER compared against // a zero address (e.g. an uninitialized address variable). /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function tryRecover(bytes32 hash, bytes memory signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 {} { switch mload(signature) case 64 { let vs := mload(add(signature, 0x40)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`. mstore(0x60, mload(add(signature, 0x40))) // `s`. } default { break } mstore(0x00, hash) mstore(0x40, mload(add(signature, 0x20))) // `r`. pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. break } } } /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function tryRecoverCalldata(bytes32 hash, bytes calldata signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { let m := mload(0x40) } 1 {} { switch signature.length case 64 { let vs := calldataload(add(signature.offset, 0x20)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, calldataload(signature.offset)) // `r`. mstore(0x60, shr(1, shl(1, vs))) // `s`. } case 65 { mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`. calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`. } default { break } mstore(0x00, hash) pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. break } } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the EIP-2098 short form signature defined by `r` and `vs`. function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, r) mstore(0x60, shr(1, shl(1, vs))) // `s`. pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the signature defined by `v`, `r`, `s`. function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, and(v, 0xff)) mstore(0x40, r) mstore(0x60, s) pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20)) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HASHING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an Ethereum Signed Message, created from a `hash`. /// This produces a hash corresponding to the one signed with the /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign) /// JSON-RPC method as part of EIP-191. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, hash) // Store into scratch space for keccak256. mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes. result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`. } } /// @dev Returns an Ethereum Signed Message, created from `s`. /// This produces a hash corresponding to the one signed with the /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign) /// JSON-RPC method as part of EIP-191. /// Note: Supports lengths of `s` up to 999999 bytes. function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let sLength := mload(s) let o := 0x20 mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded. mstore(0x00, 0x00) // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`. for { let temp := sLength } 1 {} { o := sub(o, 1) mstore8(o, add(48, mod(temp, 10))) temp := div(temp, 10) if iszero(temp) { break } } let n := sub(0x3a, o) // Header length: `26 + 32 - o`. // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes. returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20)) mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header. result := keccak256(add(s, sub(0x20, n)), add(n, sLength)) mstore(s, sLength) // Restore the length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CANONICAL HASH FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // The following functions returns the hash of the signature in it's canonicalized format, // which is the 65-byte `abi.encodePacked(r, s, uint8(v))`, where `v` is either 27 or 28. // If `s` is greater than `N / 2` then it will be converted to `N - s` // and the `v` value will be flipped. // If the signature has an invalid length, or if `v` is invalid, // a uniquely corrupt hash will be returned. // These functions are useful for "poor-mans-VRF". /// @dev Returns the canonical hash of `signature`. function canonicalHash(bytes memory signature) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { let l := mload(signature) for {} 1 {} { mstore(0x00, mload(add(signature, 0x20))) // `r`. let s := mload(add(signature, 0x40)) let v := mload(add(signature, 0x41)) if eq(l, 64) { v := add(shr(255, s), 27) s := shr(1, shl(1, s)) } if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. break } // If the length is neither 64 nor 65, return a uniquely corrupted hash. if iszero(lt(sub(l, 64), 2)) { // `bytes4(keccak256("InvalidSignatureLength"))`. result := xor(keccak256(add(signature, 0x20), l), 0xd62f1ab2) } } } /// @dev Returns the canonical hash of `signature`. function canonicalHashCalldata(bytes calldata signature) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { for {} 1 {} { mstore(0x00, calldataload(signature.offset)) // `r`. let s := calldataload(add(signature.offset, 0x20)) let v := calldataload(add(signature.offset, 0x21)) if eq(signature.length, 64) { v := add(shr(255, s), 27) s := shr(1, shl(1, s)) } if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. break } // If the length is neither 64 nor 65, return a uniquely corrupted hash. if iszero(lt(sub(signature.length, 64), 2)) { calldatacopy(mload(0x40), signature.offset, signature.length) // `bytes4(keccak256("InvalidSignatureLength"))`. result := xor(keccak256(mload(0x40), signature.length), 0xd62f1ab2) } } } /// @dev Returns the canonical hash of `signature`. function canonicalHash(bytes32 r, bytes32 vs) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { mstore(0x00, r) // `r`. let v := add(shr(255, vs), 27) let s := shr(1, shl(1, vs)) mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the canonical hash of `signature`. function canonicalHash(uint8 v, bytes32 r, bytes32 s) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { mstore(0x00, r) // `r`. if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EMPTY CALLDATA HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an empty calldata bytes. function emptySignature() internal pure returns (bytes calldata signature) { /// @solidity memory-safe-assembly assembly { signature.length := 0 } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "openzeppelin/=node_modules/@openzeppelin/contracts/", "account-abstraction/=node_modules/account-abstraction/contracts/", "erc7739Validator/=node_modules/erc7739-validator-base/src/", "solady/=node_modules/solady/src/", "forge-std/=lib/forge-std/src/", "erc7579/=node_modules/erc7579/src/", "EnumerableSet4337/=node_modules/enumerablemap4337/src/", "byteslib/=node_modules/solidity-bytes-utils/contracts/", "rlp-reader/=node_modules/Solidity-RLP/contracts/", "murky-trees/=node_modules/murky/src/", "sentinellist/=node_modules/@rhinestone/sentinellist/src/", "@ERC4337/=node_modules/@ERC4337/", "@erc7579/=node_modules/@erc7579/", "@gnosis.pm/=node_modules/@gnosis.pm/", "@openzeppelin/=node_modules/@openzeppelin/", "@prb/=node_modules/@prb/", "@rhinestone/=node_modules/@rhinestone/", "@safe-global/=node_modules/@safe-global/", "@zerodev/=node_modules/@zerodev/", "ExcessivelySafeCall/=node_modules/erc7739-validator-base/node_modules/excessively-safe-call/src/", "account-abstraction-v0.6/=node_modules/account-abstraction-v0.6/", "ds-test/=node_modules/ds-test/", "enumerablemap4337/=node_modules/enumerablemap4337/", "enumerableset4337/=node_modules/erc7739-validator-base/node_modules/@erc7579/enumerablemap4337/src/", "erc4337-validation/=node_modules/erc7739-validator-base/node_modules/@rhinestone/erc4337-validation/src/", "erc7739-validator-base/=node_modules/erc7739-validator-base/", "excessively-safe-call/=node_modules/excessively-safe-call/", "hardhat-deploy/=node_modules/hardhat-deploy/", "hardhat/=node_modules/hardhat/", "kernel/=node_modules/erc7739-validator-base/node_modules/@zerodev/kernel/src/", "module-bases/=node_modules/erc7739-validator-base/node_modules/@rhinestone/module-bases/src/", "modulekit/=node_modules/erc7739-validator-base/node_modules/@rhinestone/modulekit/src/", "murky/=node_modules/murky/", "safe7579/=node_modules/erc7739-validator-base/node_modules/@rhinestone/safe7579/src/", "solarray/=node_modules/solarray/", "solidity-bytes-utils/=node_modules/solidity-bytes-utils/", "solidity-rlp/=node_modules/solidity-rlp/" ], "optimizer": { "enabled": true, "runs": 999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": true }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"InvalidDataLength","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"InvalidTargetAddress","type":"error"},{"inputs":[],"name":"ModuleAlreadyInitialized","type":"error"},{"inputs":[],"name":"NewOwnerIsNotEOA","type":"error"},{"inputs":[],"name":"NoOwnerProvided","type":"error"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"NotInitialized","type":"error"},{"inputs":[],"name":"OwnerCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"PermitFailed","type":"error"},{"inputs":[],"name":"SafeSendersLengthInvalid","type":"error"},{"inputs":[],"name":"ZeroAddressNotAllowed","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"addSafeSender","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"smartAccount","type":"address"}],"name":"isInitialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"typeId","type":"uint256"}],"name":"isModuleType","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"smartAccount","type":"address"}],"name":"isSafeSender","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignatureWithSender","outputs":[{"internalType":"bytes4","name":"sigValidationResult","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onInstall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"onUninstall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"removeSafeSender","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"smartAccountOwners","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"supportsNestedTypedDataSign","outputs":[{"internalType":"bytes32","name":"result","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"sig","type":"bytes"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"validateSignatureWithData","outputs":[{"internalType":"bool","name":"validSig","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"bytes32","name":"accountGasLimits","type":"bytes32"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"bytes32","name":"gasFees","type":"bytes32"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct PackedUserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"}]
Contract Creation Code
6080806040523460155761384a908161001a8239f35b5f80fdfe60806040526004361015610011575f80fd5b5f3560e01c806306fdde03146101145780630807dbc11461010f5780632e5b63a61461010a57806354fd4d50146101055780635c81ca68146101005780636d61fe70146100fb5780638a91b0e3146100f6578063940d3840146100f157806397003203146100ec578063d60b347f146100e7578063d620c85a146100e2578063e824b568146100dd578063ecd05961146100d8578063f2fde38b146100d3578063f551e2ee146100ce5763fa544161146100c9575f80fd5b61083c565b6107dc565b610744565b61070c565b6106dd565b6106a3565b610655565b610609565b610558565b6104ae565b610356565b6102c8565b610271565b61022d565b6101ca565b610151565b5f91031261012357565b5f80fd5b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b34610123575f366003190112610123576101a86040516101726040826108a9565b600e81527f4b314d656556616c696461746f72000000000000000000000000000000000000602082015260405191829182610127565b0390f35b6001600160a01b0381160361012357565b35906101c8826101ac565b565b346101235760403660031901126101235760206102226004356101ec816101ac565b6001600160a01b0360243591610201836101ac565b165f526002835260405f20906001600160a01b03165f5260205260405f2090565b541515604051908152f35b34610123576020366003190112610123576001600160a01b03600435610252816101ac565b165f525f60205260206001600160a01b0360405f205416604051908152f35b34610123575f366003190112610123576101a86040516102926040826108a9565b600581527f312e302e33000000000000000000000000000000000000000000000000000000602082015260405191829182610127565b34610123576020366003190112610123576102f76001600160a01b036004356102f0816101ac565b16336117ba565b005b9181601f840112156101235782359167ffffffffffffffff8311610123576020838186019501011161012357565b6020600319820112610123576004359067ffffffffffffffff821161012357610352916004016102f9565b9091565b346101235761036436610327565b90811561048657610391336001600160a01b03165f525f6020526001600160a01b0360405f205416151590565b61045e576103b16103ab6103a58484610948565b906109d2565b60601c90565b6103c56001600160a01b0382161515610a12565b6103ce81610d8c565b61043657610418906103f0336001600160a01b03165f525f60205260405f2090565b906001600160a01b031673ffffffffffffffffffffffffffffffffffffffff19825416179055565b6014821161042257005b816102f79261043092610956565b90610e39565b7fffddfca0000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fe72ce85e000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f1f2a381c000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610123576104bc36610327565b5050335f525f60205260405f2073ffffffffffffffffffffffffffffffffffffffff198154169055335f52600160205260405f20546001905b808211156104ff57005b8181039181831161055357335f52600160205260405f2080548410156105425761053690600161053c94950160051b01543361208a565b506118a1565b906104f5565b83638277484f5f526020526024601cfd5b610da3565b346101235760603660031901126101235760043560243567ffffffffffffffff81116101235761058c9036906004016102f9565b60443567ffffffffffffffff8111610123576105ac9036906004016102f9565b601481949294106105e157601411610123576101a8936105cf933560601c610ec5565b60405190151581529081906020820190565b7fdfe93090000000000000000000000000000000000000000000000000000000005f5260045ffd5b346101235760403660031901126101235760043567ffffffffffffffff81116101235761012060031982360301126101235761064d60209160243590600401610aed565b604051908152f35b34610123576020366003190112610123576020610699600435610677816101ac565b6001600160a01b03165f525f6020526001600160a01b0360405f205416151590565b6040519015158152f35b34610123575f3660031901126101235760206040517fd620c85a000000000000000000000000000000000000000000000000000000008152f35b34610123576020366003190112610123576102f76001600160a01b03600435610705816101ac565b163361208a565b3461012357602036600319011261012357602060043560018114908115610739575b506040519015158152f35b60079150145f61072e565b3461012357602036600319011261012357600435610761816101ac565b6001600160a01b038116156107b45761077981610d8c565b610436576102f790335f525f60205260405f20906001600160a01b031673ffffffffffffffffffffffffffffffffffffffff19825416179055565b7f8579befe000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610123576060366003190112610123576004356107f9816101ac565b60443560243567ffffffffffffffff82116101235760209261082261082a9336906004016102f9565b929091610c58565b6001600160e01b031960405191168152f35b3461012357602036600319011261012357602061086360043561085e816101ac565b610d48565b6001600160a01b0360405191168152f35b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff8211176108a457604052565b610874565b90601f8019910116810190811067ffffffffffffffff8211176108a457604052565b604051906101c86101a0836108a9565b604051906101c8610120836108a9565b604051906101c860e0836108a9565b604051906101c86040836108a9565b604051906101c86080836108a9565b67ffffffffffffffff81116108a457601f01601f191660200190565b604051906109436020836108a9565b5f8252565b906014116101235790601490565b909291928360141161012357831161012357601401916013190190565b906004116101235790600490565b909291928360041161012357831161012357600401916003190190565b909291928360011161012357831161012357600101915f190190565b90939293848311610123578411610123578101920390565b356bffffffffffffffffffffffff198116929190601482106109f2575050565b6bffffffffffffffffffffffff1960149290920360031b82901b16169150565b15610a1957565b7fc81abf60000000000000000000000000000000000000000000000000000000005f5260045ffd5b35610a4b816101ac565b90565b903590601e1981360301821215610123570180359067ffffffffffffffff82116101235760200191813603831361012357565b919091356001600160e01b031981169260048110610a9d575050565b6001600160e01b0319929350829060040360031b1b161690565b929192610ac382610918565b91610ad160405193846108a9565b829481845281830111610123578281602093845f960137010152565b90610afa61085e83610a41565b906101008301926004610b0d8583610a4e565b9050105f14610b3357610b26610a4b94610b2d92610a4e565b3691610ab7565b90610f66565b6001600160e01b0319610b58610b52610b4c8785610a4e565b90610973565b90610a81565b16620bbf7760e91b8103610b855750610b77610a4b94610b7e92610a4e565b8091610981565b509061154e565b63177eee0160e01b8103610bbf57508084610bb1610ba9610a4b97610bb995610a4e565b929093610a4e565b929050610981565b91611494565b630bbf770160e11b03610be257610b77610a4b94610bdc92610a4e565b9161112f565b610b26610a4b94610b2d92610a4e565b919091357fffffff000000000000000000000000000000000000000000000000000000000081169260038110610c26575050565b7fffffff0000000000000000000000000000000000000000000000000000000000929350829060030360031b1b161690565b90918360031161012357620bbf7760e91b7fffffff0000000000000000000000000000000000000000000000000000000000610c95600384610bf2565b1614610cb057610a4b93610ca8916115f6565b929091611628565b919050610d0b610d1393610cc333610d48565b60408051602081019586523360601b6bffffffffffffffffffffffff191691810191909152909390610d0281605481015b03601f1981018352826108a9565b519020936115f6565b929091610ec5565b15610d3c577f1626ba7e0000000000000000000000000000000000000000000000000000000090565b6001600160e01b031990565b6001600160a01b0381165f525f6020526001600160a01b0360405f20541680155f14610d72575090565b905090565b6001600160a01b03610a4b9216906001611841565b3b8015159081610d9a575090565b60179150141590565b634e487b7160e01b5f52601160045260245ffd5b8115610dc1570490565b634e487b7160e01b5f52601260045260245ffd5b908160051b918083046020149015171561055357565b908160081b91808304610100149015171561055357565b906001820180921161055357565b90601b820180921161055357565b906037820180921161055357565b9190820180921161055357565b9060148106610e9d575f5b601482048110610e5357505050565b806014029060148204810361055357610e6b81610e02565b8060140290601482040361055357610e906103ab6103a5610e9693600196888a6109ba565b33610d77565b5001610e44565b7f1c6b73d6000000000000000000000000000000000000000000000000000000005f5260045ffd5b919290926001600160e01b0319610edf610b528484610973565b16620bbf7760e91b8103610f04575081610a4b9492610efd92610981565b5091611c20565b63177eee0160e01b8103610f2b575081610a4b949392610f2392610981565b929091611ab1565b630bbf770160e11b03610f505781610a4b949392610f4892610981565b9290916119f9565b610f6090610a4b94923691610ab7565b91611c74565b610f6f92611c74565b15610f78575f90565b600190565b3590811515820361012357565b359065ffffffffffff8216820361012357565b60ff81160361012357565b35906101c882610f9d565b67ffffffffffffffff81116108a45760051b60200190565b929190610fd781610fb3565b93610fe560405195866108a9565b602085838152019160051b810192831161012357905b82821061100757505050565b8135815260209182019101610ffb565b9080601f8301121561012357816020610a4b93359101610fcb565b6101a081360312610123576110456108cb565b9061104f816101bd565b825261105d602082016101bd565b602083015260408101356040830152606081013560608301526080810135608083015261108c60a08201610f7d565b60a083015260c081013560c08301526110a760e08201610f8a565b60e08301526110b96101008201610f8a565b6101008301526110cc6101208201610fa8565b6101208301526101408101356101408301526101608101356101608301526101808101359067ffffffffffffffff82116101235761110c91369101611017565b61018082015290565b6040513d5f823e3d90fd5b90816020910312610123575190565b92915061113e90602001611032565b60e081019161117d611156845165ffffffffffff1690565b61010084019565ffffffffffff80611174895165ffffffffffff1690565b16921690611cdf565b6111878383611d26565b9261014081018051906111fb6111f76101608501978851906111f16101208801966111e36111b6895160ff1690565b6040519586936020850191926041936001600160f81b0319928452602084015260f81b1660408201520190565b03601f1981018452836108a9565b88611c74565b1590565b611487576112196111f76101808501519560c0860196875190611dec565b6114875760a0830151611271575b505050505050611250611243610a4b935165ffffffffffff1690565b915165ffffffffffff1690565b6001600160d01b031965ffffffffffff60a01b9160d01b169160a01b161790565b61129161128584516001600160a01b031690565b6001600160a01b031690565b9360208401946112a886516001600160a01b031690565b60608601986112bc8a519451965160ff1690565b9451905190833b156101235761133f5f96928b9288946040519a8b998a9889977fd505accf000000000000000000000000000000000000000000000000000000008952600489019360c09591989796936001600160a01b0360ff948160e089019c1688521660208701526040860152606085015216608083015260a08201520152565b03925af1908161146d575b5061145a57916020916113826113746112856112856112856113cf9998516001600160a01b031690565b91516001600160a01b031690565b6040517fdd62ed3e0000000000000000000000000000000000000000000000000000000081526001600160a01b039384166004820152921660248301529093849190829081906044820190565b03915afa918215611455575f92611424575b5051116113fc57611250611243610a4b935b935f8080611227565b7fb78cb0dd000000000000000000000000000000000000000000000000000000005f5260045ffd5b61144791925060203d60201161144e575b61143f81836108a9565b810190611120565b905f6113e1565b503d611435565b611115565b50505050611250611243610a4b936113f3565b8061147b5f611481936108a9565b80610119565b5f61134a565b5050505050505050600190565b929161149f91611ef7565b9060e08201916115086111f76114dc6114be865165ffffffffffff1690565b61010085019765ffffffffffff806111748b5165ffffffffffff1690565b936040840151906114fd6060860151926111e36111b6602089015160ff1690565b608085015190611c74565b61154557611524918160a060c06111f794015191015190611dec565b61153e57611250611243610a4b935165ffffffffffff1690565b5050600190565b50505050600190565b9091823591602084013592604085013594606081013501926115a484359183610f606115938560051b89019765ffffffffffff8c169065ffffffffffff8c1690611cdf565b963690604060208201359101610ab7565b156115eb576115c0936115bb916020369201610fcb565b611dec565b1561153e57610a4b91906001600160d01b031965ffffffffffff60a01b9160d01b169160a01b161790565b505050505050600190565b9182828101601f19013561649261ffff30801c190402146116145750565b604091935080925001350160208135910191565b9291908215611755575b7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a060208301351161172d576001600160a01b035f94166dd9ecebf3c23529de49815dac1c4c8114908115611723575b81156116f3575b506116d3575b83156116c0575b83156116ae575b505050155f03631626ba7e1760e01b90565b6116b89350612567565b5f808061169c565b92506116cd828285612296565b92611695565b92506116ed6116e133610d48565b84610f60368686610ab7565b9261168e565b90505f52600260205261171a3360405f20906001600160a01b03165f5260205260405f2090565b5415155f611688565b3381149150611681565b7f8baa579f000000000000000000000000000000000000000000000000000000005f5260045ffd5b61773961ffff84190402810361163257505050507f773900010000000000000000000000000000000000000000000000000000000090565b6001906117b4935f520160205260405f20906001600160a01b03165f5260205260405f2090565b54151590565b815f52600180016020526117e28160405f20906001600160a01b03165f5260205260405f2090565b5461183b5780611835915f52600160205260405f20600181540190848260051b82015555805f52600160205260405f2054925f52600260205260405f20906001600160a01b03165f5260205260405f2090565b55600190565b50505f90565b9061184d83828461178d565b61189a575f81815260208390526040902080546001908101600581901b830186905591829055611835939091945f520160205260405f20906001600160a01b03165f5260205260405f2090565b5050505f90565b5f1981146105535760010190565b5f1981019190821161055357565b60051981019190821161055357565b60221981019190821161055357565b601f1981019190821161055357565b60bf1981019190821161055357565b607f1981019190821161055357565b602003906020821161055357565b9190820391821161055357565b91909161012081840312610123576119396108db565b92611943826101bd565b84526020820135602085015260408201356040850152606082013560608501526080820135608085015261197960a08301610fa8565b60a085015260c082013560c085015260e082013560e085015261010082013567ffffffffffffffff8111610123576119b19201611017565b610100830152565b35610a4b81610f9d565b903590601e1981360301821215610123570180359067ffffffffffffffff821161012357602001918160051b3603831361012357565b919250611a786111f76020850193611a1a611a143687611923565b8261261a565b61010087013591611a7360e0890135611a65611a3860c08c016119b9565b6040519687936020850191926041936001600160f81b0319928452602084015260f81b1660408201520190565b03601f1981018552846108a9565b611c74565b61189a5760a06115bb84611a976111f795610120611aa49801906119c3565b9390910135923691610fcb565b611aad57600190565b5f90565b611ab96126a1565b50611ac48484611ea7565b3560f81c92611ad2856118af565b611add908683611eb5565b3560f81c611aea81610dd5565b611af390610e02565b611afd9087611916565b611b0890878461099e565b909290611b16368286610ab7565b611b1f906127aa565b91611b29836127d7565b611b3390896128f2565b93888551611b4090612a16565b9360208701978851986040890191825198611b5a9061315f565b9190508a5192519351943690611b6f92610ab7565b611b7895612ac0565b9460600151611b8690612c41565b99611b9092612e9f565b96611b996108eb565b60ff918216815291166020820181905260408201859052606082018390526080820193845260a0820198895260c090910196875260408051602081019590955284019190915260f81b6001600160f81b031916606083015260418252611c006061836108a9565b51611c0a92611c74565b1561189a57611aa4926111f79251905190611dec565b9180359060208101350192611c4b84359183610f608460051b88013690604060208201359101610ab7565b15611c6c57611c62936115bb916020369201610fcb565b15611aad57600190565b505050505f90565b906001600160a01b03929183611c8a84846126e8565b911693168314611cd7576001600160a01b0391611ccd916020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c6004206126e8565b1614610f78575f90565b505050600190565b9160405191602083019384526040830152606082015260608152611d046080826108a9565b5190206040516020810191825260208152611d206040826108a9565b51902090565b90604060429260c0830151611db06001600160a01b03602086015116610cf46060870151936080880151875195869460208601988991926001600160a01b0360a09497969592978160c08601997f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98752166020860152166040840152606083015260808201520152565b51902091015190604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b929091905f915b8451831015611e3557611e06838661277e565b519081811015611e24575f52602052600160405f205b920191611df3565b905f52602052600160405f20611e1c565b915092501490565b60405190610120820182811067ffffffffffffffff8211176108a4576040525f610100838281528260208201528260408201528260608201528260808201528260a0820152606060c08201528260e08201520152565b634e487b7160e01b5f52603260045260245ffd5b9015611eb05790565b611e93565b90821015611eb0570190565b919091356001600160d01b031981169260068110611edd575050565b6001600160d01b0319929350829060060360031b1b161690565b611eff611e3d565b50611f0a8282611ea7565b3560f81c91600c91611f1c8383611916565b611f25836118bd565b611f309184846109ba565b611f3991611ec1565b60d01c9180611f47816118bd565b90611f539181856109ba565b611f5c91611ec1565b60d01c93611f6a8183611916565b611f73906118af565b611f7e908385611eb5565b3560f81c90611f8c82610dd5565b611f9590610e02565b90611f9f91610e2c565b611fa99083611916565b611fb490838561099e565b9390611fc1368683610ab7565b611fca906127aa565b91611fd4836127d7565b611fde908a6128f2565b93898551611feb90612a16565b97602087019485519560408901918251986120059061315f565b9190508a519251935194369061201a92610ab7565b61202395612ac0565b946060015161203190612c41565b9561203b92612d4e565b946120446108db565b60ff909916895260ff16602089015260408801526060870152608086015260a085015260c084015265ffffffffffff1660e083015265ffffffffffff1661010082015290565b90805f5260026020526120b18260405f20906001600160a01b03165f5260205260405f2090565b5491821561189a575f19830191838311610553575f828152600160205260409020545f19810191908211610553575f94848484612110956118359803612126575b509050612101915060016134a7565b6002905f5260205260405f2090565b906001600160a01b03165f5260205260405f2090565b6121469261210161213c6121109385600161345a565b8092856001613489565b555f8084816120f2565b81601f820112156101235780519061216782610918565b9261217560405194856108a9565b8284526020838301011161012357815f9260208093018386015e8301015290565b51906101c8826101ac565b9080601f830112156101235781516121b881610fb3565b926121c660405194856108a9565b81845260208085019260051b82010192831161012357602001905b8282106121ee5750505090565b81518152602091820191016121e1565b9060e0828203126101235781516001600160f81b0319811681036101235792602083015167ffffffffffffffff8111610123578261223d918501612150565b92604081015167ffffffffffffffff8111610123578361225e918301612150565b9260608201519261227160808401612196565b9260a08101519260c082015167ffffffffffffffff811161012357610a4b92016121a1565b90923093306124bf575b60405190600119858201013560f01c94600e830196869187810384016041198101976119015f5260408960203789158a604201841017816042601e20181761247f57507f5479706564446174615369676e2800000000000000000000000000000000000086526001198101999889818c82378188016028600e8201526029600d8201515f1a03612429575b506f07fffffe000000000000010000000000919250999899515f1a1c5b88515f1a602881146123695790651201000000016001921c17980197612348565b50929496999086986040610a4b9b83605c96989a957f20636f6e74656e74732c737472696e67206e616d652c737472696e670000000085527f2076657273696f6e2c75696e7432353620636861696e49642c61646472657373601c8601527f20766572696679696e67436f6e74726163742c627974657333322073616c7429603c8601528785013788370103018620835260e08320604052600116604201601e2092604119910301935b604052612dcb576124249033612ddc565b612dcb565b60015f5b016029600d82840301515f1a14848210111561244b5760019061242d565b6028915080806040600e936f07fffffe000000000000010000000000970397886041199101010185378a010153829161232b565b949699505095505050610a4b94505f907f983e65e5148e570cd828ead231ee759a8d7958721a768f93bc4483ba005c32de5f5260205260405f2091612413565b6040516342580cb760e11b815294505f85600481335afa8015611455575f955f5f905f925f9461252e575b50906001600160a01b039291604051996020815191012060408b01526020815191012060608a015260808901521660a087015260c086015260e085016040526122a0565b925050506001600160a01b03965061255891503d805f833e61255081836108a9565b8101906121fe565b509399939450929091906124ea565b92915f933a1561257657505050565b90919293503a3a5260203a3a386d378edcd5b5b0a24f5342d8c1048561fffffa503a51156125b7575b610f60610a4b936125af33610d48565b933691610ab7565b60405192631626ba7e3a526d378edcd5b5b0a24f5342d8c1048560205260408052454561ffff011790815a106d378edcd5b5b0a24f5342d8c1048584141761261857610a4b94610f60923a906064601c3a923090fa5060405293505061259f565bfe5b9060206042926080830151611db06001600160a01b03855116610cf46040870151936060880151604051958694898601988991926001600160a01b0360a09497969592978160c08601997f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98752166020860152166040840152606083015260808201520152565b6040519060e0820182811067ffffffffffffffff8211176108a457604052606060c0835f81525f60208201525f60408201525f838201525f60808201525f60a08201520152565b9190915f92604051918151806040146127405760411461270757505050565b602092945060608201515f1a835260408201516060525b5f5201516040526020604060805f60015afa505f6060523d6060185191604052565b5060209294507f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040830151601b8160ff1c0185521660605261271e565b8051821015611eb05760209160051b010190565b6040519061279f82610888565b5f6020838281520152565b6127b2612792565b506020815191604051926127c584610888565b835201602082015290565b1561012357565b906127e182612f08565b15610123576127ef82612f28565b916127f983610fb3565b9061280760405192836108a9565b838252601f1961281685610fb3565b015f5b8181106128a65750506020810161283a815161283481612f89565b90610e2c565b945f905b808210612860575050610a4b929394612858915190611916565b9051146127d0565b909561289e81612871600193612ff4565b9061287a6108fa565b82815281602082015261288d8b8a61277e565b526128988a8961277e565b50610e2c565b96019061283e565b6020906128b1612792565b82828701015201612819565b604051906080820182811067ffffffffffffffff8211176108a457604052606080835f81525f60208201525f60408201520152565b60ff906128fd6128bd565b5016806129775750600560069061295961295360079460ff61294b612935826129436129358261293b6129358260089e5b168a61277e565b51613072565b9c168761277e565b98168461277e565b94169061277e565b51613123565b91612962610909565b93845260208401526040830152606082015290565b6002036129ab576007600990612959612953600a9460ff61294b612935826129436129358261293b61293582600b9e61292e565b60405162461bcd60e51b815260206004820152602860248201527f547856616c696461746f724c69623a3a20756e737570706f727465642065766d60448201527f20747820747970650000000000000000000000000000000000000000000000006064820152608490fd5b60258110612a7757612a278161314d565b7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8116810361055357612a6c612a67610a4b93612a719360011b90611916565b6118cc565b610e10565b60ff1690565b60018111612a7157601b81018091116105535760ff1690565b805191908290602001825e015f815290565b6001906001600160f81b0319610a4b949360f81b1681520190612a90565b94612b1a9192612b10612b08612afc612b1f94612af5612ae9612aee612ae9612b259c9d613634565b6136b0565b5192613634565b5190610e2c565b612af5612ae98a613634565b918551611916565b9283918551611916565b611916565b91613290565b9060ff831660028103612b5d575050611d20612b4c610cf492612b46610934565b90613316565b604051928391602083019586612aa2565b91925090612bd75760258110612bca57612bc091612bbb612b88612b83612bb59461314d565b61318b565b6111e3612b96612ae961358f565b612bb5612ba4612ae961358f565b916040519788956020870190612a90565b90612a90565b613316565b6020815191012090565b50612bc090612b46610934565b60405162461bcd60e51b8152602060048201526024808201527f547856616c696461746f724c69623a3a20756e737570706f727465642074782060448201527f74797065000000000000000000000000000000000000000000000000000000006064820152608490fd5b6020815110612c83578051601f19810190811161055357612c619161322d565b602081519101519060208110612c75575090565b5f199060200360031b1b1690565b608460405162461bcd60e51b815260206004820152602560248201527f54784465636f6465723a3a2063616c6c44617461206c656e67746820746f6f2060448201527f73686f72740000000000000000000000000000000000000000000000000000006064820152fd5b90612cf782610fb3565b612d0460405191826108a9565b8281528092612d15601f1991610fb3565b0190602036910137565b60ff168015610553575f190190565b359060208110612c75575090565b60ff5f199116019060ff821161055357565b929190612d5d60ff8316612ced565b93600b198201828111610553575f198101908111610553579291925b60ff8316612d875750505050565b612dbf81612dab612da582612d9e612dc5966118db565b89886109ba565b90612d2e565b612db960ff61292e88612d3c565b526118db565b92612d1f565b91612d79565b610f60610a4b93926125af33610d48565b5f6001600160a01b03916004604051809481936342580cb760e11b8352165afa9081156114555760a0915f915f5f915f93612e7a575b50604051937f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f855260208151910120602085015260208151910120604084015260608301526080820152206719010000000000005f52601a52603a526042601820905f603a52565b92505050612e9291503d805f833e61255081836108a9565b509394509250905f612e12565b9291612ead60ff8216612ced565b935f198301838111610553575b60ff8316612ec85750505050565b601f19810181811161055357612ee6612da5612f02938388876109ba565b612efb60ff612ef487612d3c565b168961277e565b5292612d1f565b91612eba565b805115612f2357602060c0910151515f1a10611aad57600190565b505f90565b805115612f23575f9060208101908151612f4181612f89565b8101809111610553579151905181018091116105535791905b828110612f675750905090565b612f7081612ff4565b810180911161055357612f8390916118a1565b90612f5a565b515f1a6080811015612f9a57505f90565b60b881108015612fde575b15612fb05750600190565b60c0811015612fcf57610a4b90612fca9060b75b90611916565b610e02565b610a4b90612fca9060f7612fc4565b5060c08110158015612fa5575060f88110612fa5565b80515f1a906080821015613009575050600190565b60b882101561301f5750612fca610a4b916118f9565b60c08210156130425760010151602082900360b7016101000a90040160b5190190565b60f88210156130585750612fca610a4b916118ea565b60010151602082900360f7016101000a90040160f5190190565b805180151590816130a8575b50156101235761308d9061315f565b9051906020811061309c575090565b6020036101000a900490565b6021915011155f61307e565b604080519091906130c583826108a9565b60208152918290601f190190369060200137565b604080519091906130ea83826108a9565b6001815291601f1901366020840137565b9061310582610918565b61311260405191826108a9565b8281528092612d15601f1991610918565b80511561012357613136610a4b9161315f565b613142819392936130fb565b9283602001906134fe565b60221981019081116105535760011c90565b90602082019161316f8351612f89565b9251908382018092116105535751928303928311610553579190565b612ae9610a4b91613634565b1561319e57565b606460405162461bcd60e51b815260206004820152600e60248201527f736c6963655f6f766572666c6f770000000000000000000000000000000000006044820152fd5b156131e957565b606460405162461bcd60e51b815260206004820152601160248201527f736c6963655f6f75744f66426f756e64730000000000000000000000000000006044820152fd5b906132386001613197565b815160208201808311610553576132509110156131e2565b6040519160208084019260408501920101905b80831061327d57505060208252601f01601f191660405290565b9091602080918451815201920190613263565b916132a081601f81011015613197565b6132b683516132af8385610e2c565b11156131e2565b806132ce575050506040515f81526020810160405290565b60405192601f821692831560051b80858701019484860193010101905b8084106133035750508252601f01601f191660405290565b90926020809185518152019301906132eb565b61333190610cf4612bb5936040519485936020850190612a90565b805190603882101561338557612bb591610cf4610a4b926001600160f81b031961336460c061335e6130d9565b95610e2c565b60f81b165f1a61337384613571565b535b6040519485936020850190612a90565b916001915f5b6133958483610db7565b156133b2576133a66133ac916118a1565b93610deb565b9261338b565b9092509290926133c96133c482610e02565b6130fb565b926001600160f81b03196133e66133e160c085610e2c565b610e1e565b60f81b165f1a6133f585613571565b5360015b8281111561341457505050612bb591610cf4610a4b92613375565b806001600160f81b031961343f612a716134396134346134559689611916565b6134ef565b86610db7565b60f81b165f1a61344f828861357e565b536118a1565b6133f9565b905f5260205260405f209081548110156134795760010160051b015490565b638277484f5f526020526024601cfd5b905f5260205260405f209081548110156134795760010160051b0155565b905f5260205260405f2080549081156134eb575f198201918083116105535781548310156134da575f9060051b82015555565b82638277484f5f526020526024601cfd5b5050565b601f8111610553576101000a90565b9091801561356c575b602081101561353c578061351a57505050565b61352961343461352e92611908565b6118af565b905182518216911916179052565b919080518252602081018091116105535790602081018091116105535791601f1981019081111561350757610da3565b505050565b805115611eb05760200190565b908151811015611eb0570160200190565b6135976130b4565b905f60208301525f915b60208310613603575b6135b66133c484611908565b905f5b82518110156135fc576001906135e96135db6135d4886118a1565b978561357e565b516001600160f81b03191690565b5f1a6135f5828661357e565b53016135b9565b5090925050565b916136216136146135db838661357e565b6001600160f81b03191690565b61362e57600101916135a1565b916135aa565b9061363d6130b4565b9160208301525f915b6020831061368c575b61365b6133c484611908565b905f5b82518110156135fc576001906136796135db6135d4886118a1565b5f1a613685828661357e565b530161365e565b9161369d6136146135db838661357e565b6136aa5760010191613646565b9161364f565b805160018114908161374a575b50156136c65790565b6136d08151613762565b6040519181518084526020840190840191602083019160208501905b83811061373a5750508051809286518201875293019260208085019201905b82811061372a5750509251603f91011590910101601f19166040525090565b815181526020918201910161370b565b81518152602091820191016136ec565b905015611eb0576080602082015160f81c105f6136bd565b603881101561379a576001600160f81b031961378760806137816130d9565b93610e2c565b60f81b165f1a61379682613571565b5390565b6001915f5b6137a98484610db7565b156137c0576133a66137ba916118a1565b9261379f565b9092506137cf6133c482610e02565b916001600160f81b03196137e76133e1608085610e2c565b60f81b165f1a6137f684613571565b5360015b828111156138085750505090565b806001600160f81b0319613828612a716134396134346138389689611916565b60f81b165f1a61344f828761357e565b6137fa56fea164736f6c634300081b000a
Deployed Bytecode
0x60806040526004361015610011575f80fd5b5f3560e01c806306fdde03146101145780630807dbc11461010f5780632e5b63a61461010a57806354fd4d50146101055780635c81ca68146101005780636d61fe70146100fb5780638a91b0e3146100f6578063940d3840146100f157806397003203146100ec578063d60b347f146100e7578063d620c85a146100e2578063e824b568146100dd578063ecd05961146100d8578063f2fde38b146100d3578063f551e2ee146100ce5763fa544161146100c9575f80fd5b61083c565b6107dc565b610744565b61070c565b6106dd565b6106a3565b610655565b610609565b610558565b6104ae565b610356565b6102c8565b610271565b61022d565b6101ca565b610151565b5f91031261012357565b5f80fd5b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b34610123575f366003190112610123576101a86040516101726040826108a9565b600e81527f4b314d656556616c696461746f72000000000000000000000000000000000000602082015260405191829182610127565b0390f35b6001600160a01b0381160361012357565b35906101c8826101ac565b565b346101235760403660031901126101235760206102226004356101ec816101ac565b6001600160a01b0360243591610201836101ac565b165f526002835260405f20906001600160a01b03165f5260205260405f2090565b541515604051908152f35b34610123576020366003190112610123576001600160a01b03600435610252816101ac565b165f525f60205260206001600160a01b0360405f205416604051908152f35b34610123575f366003190112610123576101a86040516102926040826108a9565b600581527f312e302e33000000000000000000000000000000000000000000000000000000602082015260405191829182610127565b34610123576020366003190112610123576102f76001600160a01b036004356102f0816101ac565b16336117ba565b005b9181601f840112156101235782359167ffffffffffffffff8311610123576020838186019501011161012357565b6020600319820112610123576004359067ffffffffffffffff821161012357610352916004016102f9565b9091565b346101235761036436610327565b90811561048657610391336001600160a01b03165f525f6020526001600160a01b0360405f205416151590565b61045e576103b16103ab6103a58484610948565b906109d2565b60601c90565b6103c56001600160a01b0382161515610a12565b6103ce81610d8c565b61043657610418906103f0336001600160a01b03165f525f60205260405f2090565b906001600160a01b031673ffffffffffffffffffffffffffffffffffffffff19825416179055565b6014821161042257005b816102f79261043092610956565b90610e39565b7fffddfca0000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fe72ce85e000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f1f2a381c000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610123576104bc36610327565b5050335f525f60205260405f2073ffffffffffffffffffffffffffffffffffffffff198154169055335f52600160205260405f20546001905b808211156104ff57005b8181039181831161055357335f52600160205260405f2080548410156105425761053690600161053c94950160051b01543361208a565b506118a1565b906104f5565b83638277484f5f526020526024601cfd5b610da3565b346101235760603660031901126101235760043560243567ffffffffffffffff81116101235761058c9036906004016102f9565b60443567ffffffffffffffff8111610123576105ac9036906004016102f9565b601481949294106105e157601411610123576101a8936105cf933560601c610ec5565b60405190151581529081906020820190565b7fdfe93090000000000000000000000000000000000000000000000000000000005f5260045ffd5b346101235760403660031901126101235760043567ffffffffffffffff81116101235761012060031982360301126101235761064d60209160243590600401610aed565b604051908152f35b34610123576020366003190112610123576020610699600435610677816101ac565b6001600160a01b03165f525f6020526001600160a01b0360405f205416151590565b6040519015158152f35b34610123575f3660031901126101235760206040517fd620c85a000000000000000000000000000000000000000000000000000000008152f35b34610123576020366003190112610123576102f76001600160a01b03600435610705816101ac565b163361208a565b3461012357602036600319011261012357602060043560018114908115610739575b506040519015158152f35b60079150145f61072e565b3461012357602036600319011261012357600435610761816101ac565b6001600160a01b038116156107b45761077981610d8c565b610436576102f790335f525f60205260405f20906001600160a01b031673ffffffffffffffffffffffffffffffffffffffff19825416179055565b7f8579befe000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610123576060366003190112610123576004356107f9816101ac565b60443560243567ffffffffffffffff82116101235760209261082261082a9336906004016102f9565b929091610c58565b6001600160e01b031960405191168152f35b3461012357602036600319011261012357602061086360043561085e816101ac565b610d48565b6001600160a01b0360405191168152f35b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff8211176108a457604052565b610874565b90601f8019910116810190811067ffffffffffffffff8211176108a457604052565b604051906101c86101a0836108a9565b604051906101c8610120836108a9565b604051906101c860e0836108a9565b604051906101c86040836108a9565b604051906101c86080836108a9565b67ffffffffffffffff81116108a457601f01601f191660200190565b604051906109436020836108a9565b5f8252565b906014116101235790601490565b909291928360141161012357831161012357601401916013190190565b906004116101235790600490565b909291928360041161012357831161012357600401916003190190565b909291928360011161012357831161012357600101915f190190565b90939293848311610123578411610123578101920390565b356bffffffffffffffffffffffff198116929190601482106109f2575050565b6bffffffffffffffffffffffff1960149290920360031b82901b16169150565b15610a1957565b7fc81abf60000000000000000000000000000000000000000000000000000000005f5260045ffd5b35610a4b816101ac565b90565b903590601e1981360301821215610123570180359067ffffffffffffffff82116101235760200191813603831361012357565b919091356001600160e01b031981169260048110610a9d575050565b6001600160e01b0319929350829060040360031b1b161690565b929192610ac382610918565b91610ad160405193846108a9565b829481845281830111610123578281602093845f960137010152565b90610afa61085e83610a41565b906101008301926004610b0d8583610a4e565b9050105f14610b3357610b26610a4b94610b2d92610a4e565b3691610ab7565b90610f66565b6001600160e01b0319610b58610b52610b4c8785610a4e565b90610973565b90610a81565b16620bbf7760e91b8103610b855750610b77610a4b94610b7e92610a4e565b8091610981565b509061154e565b63177eee0160e01b8103610bbf57508084610bb1610ba9610a4b97610bb995610a4e565b929093610a4e565b929050610981565b91611494565b630bbf770160e11b03610be257610b77610a4b94610bdc92610a4e565b9161112f565b610b26610a4b94610b2d92610a4e565b919091357fffffff000000000000000000000000000000000000000000000000000000000081169260038110610c26575050565b7fffffff0000000000000000000000000000000000000000000000000000000000929350829060030360031b1b161690565b90918360031161012357620bbf7760e91b7fffffff0000000000000000000000000000000000000000000000000000000000610c95600384610bf2565b1614610cb057610a4b93610ca8916115f6565b929091611628565b919050610d0b610d1393610cc333610d48565b60408051602081019586523360601b6bffffffffffffffffffffffff191691810191909152909390610d0281605481015b03601f1981018352826108a9565b519020936115f6565b929091610ec5565b15610d3c577f1626ba7e0000000000000000000000000000000000000000000000000000000090565b6001600160e01b031990565b6001600160a01b0381165f525f6020526001600160a01b0360405f20541680155f14610d72575090565b905090565b6001600160a01b03610a4b9216906001611841565b3b8015159081610d9a575090565b60179150141590565b634e487b7160e01b5f52601160045260245ffd5b8115610dc1570490565b634e487b7160e01b5f52601260045260245ffd5b908160051b918083046020149015171561055357565b908160081b91808304610100149015171561055357565b906001820180921161055357565b90601b820180921161055357565b906037820180921161055357565b9190820180921161055357565b9060148106610e9d575f5b601482048110610e5357505050565b806014029060148204810361055357610e6b81610e02565b8060140290601482040361055357610e906103ab6103a5610e9693600196888a6109ba565b33610d77565b5001610e44565b7f1c6b73d6000000000000000000000000000000000000000000000000000000005f5260045ffd5b919290926001600160e01b0319610edf610b528484610973565b16620bbf7760e91b8103610f04575081610a4b9492610efd92610981565b5091611c20565b63177eee0160e01b8103610f2b575081610a4b949392610f2392610981565b929091611ab1565b630bbf770160e11b03610f505781610a4b949392610f4892610981565b9290916119f9565b610f6090610a4b94923691610ab7565b91611c74565b610f6f92611c74565b15610f78575f90565b600190565b3590811515820361012357565b359065ffffffffffff8216820361012357565b60ff81160361012357565b35906101c882610f9d565b67ffffffffffffffff81116108a45760051b60200190565b929190610fd781610fb3565b93610fe560405195866108a9565b602085838152019160051b810192831161012357905b82821061100757505050565b8135815260209182019101610ffb565b9080601f8301121561012357816020610a4b93359101610fcb565b6101a081360312610123576110456108cb565b9061104f816101bd565b825261105d602082016101bd565b602083015260408101356040830152606081013560608301526080810135608083015261108c60a08201610f7d565b60a083015260c081013560c08301526110a760e08201610f8a565b60e08301526110b96101008201610f8a565b6101008301526110cc6101208201610fa8565b6101208301526101408101356101408301526101608101356101608301526101808101359067ffffffffffffffff82116101235761110c91369101611017565b61018082015290565b6040513d5f823e3d90fd5b90816020910312610123575190565b92915061113e90602001611032565b60e081019161117d611156845165ffffffffffff1690565b61010084019565ffffffffffff80611174895165ffffffffffff1690565b16921690611cdf565b6111878383611d26565b9261014081018051906111fb6111f76101608501978851906111f16101208801966111e36111b6895160ff1690565b6040519586936020850191926041936001600160f81b0319928452602084015260f81b1660408201520190565b03601f1981018452836108a9565b88611c74565b1590565b611487576112196111f76101808501519560c0860196875190611dec565b6114875760a0830151611271575b505050505050611250611243610a4b935165ffffffffffff1690565b915165ffffffffffff1690565b6001600160d01b031965ffffffffffff60a01b9160d01b169160a01b161790565b61129161128584516001600160a01b031690565b6001600160a01b031690565b9360208401946112a886516001600160a01b031690565b60608601986112bc8a519451965160ff1690565b9451905190833b156101235761133f5f96928b9288946040519a8b998a9889977fd505accf000000000000000000000000000000000000000000000000000000008952600489019360c09591989796936001600160a01b0360ff948160e089019c1688521660208701526040860152606085015216608083015260a08201520152565b03925af1908161146d575b5061145a57916020916113826113746112856112856112856113cf9998516001600160a01b031690565b91516001600160a01b031690565b6040517fdd62ed3e0000000000000000000000000000000000000000000000000000000081526001600160a01b039384166004820152921660248301529093849190829081906044820190565b03915afa918215611455575f92611424575b5051116113fc57611250611243610a4b935b935f8080611227565b7fb78cb0dd000000000000000000000000000000000000000000000000000000005f5260045ffd5b61144791925060203d60201161144e575b61143f81836108a9565b810190611120565b905f6113e1565b503d611435565b611115565b50505050611250611243610a4b936113f3565b8061147b5f611481936108a9565b80610119565b5f61134a565b5050505050505050600190565b929161149f91611ef7565b9060e08201916115086111f76114dc6114be865165ffffffffffff1690565b61010085019765ffffffffffff806111748b5165ffffffffffff1690565b936040840151906114fd6060860151926111e36111b6602089015160ff1690565b608085015190611c74565b61154557611524918160a060c06111f794015191015190611dec565b61153e57611250611243610a4b935165ffffffffffff1690565b5050600190565b50505050600190565b9091823591602084013592604085013594606081013501926115a484359183610f606115938560051b89019765ffffffffffff8c169065ffffffffffff8c1690611cdf565b963690604060208201359101610ab7565b156115eb576115c0936115bb916020369201610fcb565b611dec565b1561153e57610a4b91906001600160d01b031965ffffffffffff60a01b9160d01b169160a01b161790565b505050505050600190565b9182828101601f19013561649261ffff30801c190402146116145750565b604091935080925001350160208135910191565b9291908215611755575b7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a060208301351161172d576001600160a01b035f94166dd9ecebf3c23529de49815dac1c4c8114908115611723575b81156116f3575b506116d3575b83156116c0575b83156116ae575b505050155f03631626ba7e1760e01b90565b6116b89350612567565b5f808061169c565b92506116cd828285612296565b92611695565b92506116ed6116e133610d48565b84610f60368686610ab7565b9261168e565b90505f52600260205261171a3360405f20906001600160a01b03165f5260205260405f2090565b5415155f611688565b3381149150611681565b7f8baa579f000000000000000000000000000000000000000000000000000000005f5260045ffd5b61773961ffff84190402810361163257505050507f773900010000000000000000000000000000000000000000000000000000000090565b6001906117b4935f520160205260405f20906001600160a01b03165f5260205260405f2090565b54151590565b815f52600180016020526117e28160405f20906001600160a01b03165f5260205260405f2090565b5461183b5780611835915f52600160205260405f20600181540190848260051b82015555805f52600160205260405f2054925f52600260205260405f20906001600160a01b03165f5260205260405f2090565b55600190565b50505f90565b9061184d83828461178d565b61189a575f81815260208390526040902080546001908101600581901b830186905591829055611835939091945f520160205260405f20906001600160a01b03165f5260205260405f2090565b5050505f90565b5f1981146105535760010190565b5f1981019190821161055357565b60051981019190821161055357565b60221981019190821161055357565b601f1981019190821161055357565b60bf1981019190821161055357565b607f1981019190821161055357565b602003906020821161055357565b9190820391821161055357565b91909161012081840312610123576119396108db565b92611943826101bd565b84526020820135602085015260408201356040850152606082013560608501526080820135608085015261197960a08301610fa8565b60a085015260c082013560c085015260e082013560e085015261010082013567ffffffffffffffff8111610123576119b19201611017565b610100830152565b35610a4b81610f9d565b903590601e1981360301821215610123570180359067ffffffffffffffff821161012357602001918160051b3603831361012357565b919250611a786111f76020850193611a1a611a143687611923565b8261261a565b61010087013591611a7360e0890135611a65611a3860c08c016119b9565b6040519687936020850191926041936001600160f81b0319928452602084015260f81b1660408201520190565b03601f1981018552846108a9565b611c74565b61189a5760a06115bb84611a976111f795610120611aa49801906119c3565b9390910135923691610fcb565b611aad57600190565b5f90565b611ab96126a1565b50611ac48484611ea7565b3560f81c92611ad2856118af565b611add908683611eb5565b3560f81c611aea81610dd5565b611af390610e02565b611afd9087611916565b611b0890878461099e565b909290611b16368286610ab7565b611b1f906127aa565b91611b29836127d7565b611b3390896128f2565b93888551611b4090612a16565b9360208701978851986040890191825198611b5a9061315f565b9190508a5192519351943690611b6f92610ab7565b611b7895612ac0565b9460600151611b8690612c41565b99611b9092612e9f565b96611b996108eb565b60ff918216815291166020820181905260408201859052606082018390526080820193845260a0820198895260c090910196875260408051602081019590955284019190915260f81b6001600160f81b031916606083015260418252611c006061836108a9565b51611c0a92611c74565b1561189a57611aa4926111f79251905190611dec565b9180359060208101350192611c4b84359183610f608460051b88013690604060208201359101610ab7565b15611c6c57611c62936115bb916020369201610fcb565b15611aad57600190565b505050505f90565b906001600160a01b03929183611c8a84846126e8565b911693168314611cd7576001600160a01b0391611ccd916020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c6004206126e8565b1614610f78575f90565b505050600190565b9160405191602083019384526040830152606082015260608152611d046080826108a9565b5190206040516020810191825260208152611d206040826108a9565b51902090565b90604060429260c0830151611db06001600160a01b03602086015116610cf46060870151936080880151875195869460208601988991926001600160a01b0360a09497969592978160c08601997f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98752166020860152166040840152606083015260808201520152565b51902091015190604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b929091905f915b8451831015611e3557611e06838661277e565b519081811015611e24575f52602052600160405f205b920191611df3565b905f52602052600160405f20611e1c565b915092501490565b60405190610120820182811067ffffffffffffffff8211176108a4576040525f610100838281528260208201528260408201528260608201528260808201528260a0820152606060c08201528260e08201520152565b634e487b7160e01b5f52603260045260245ffd5b9015611eb05790565b611e93565b90821015611eb0570190565b919091356001600160d01b031981169260068110611edd575050565b6001600160d01b0319929350829060060360031b1b161690565b611eff611e3d565b50611f0a8282611ea7565b3560f81c91600c91611f1c8383611916565b611f25836118bd565b611f309184846109ba565b611f3991611ec1565b60d01c9180611f47816118bd565b90611f539181856109ba565b611f5c91611ec1565b60d01c93611f6a8183611916565b611f73906118af565b611f7e908385611eb5565b3560f81c90611f8c82610dd5565b611f9590610e02565b90611f9f91610e2c565b611fa99083611916565b611fb490838561099e565b9390611fc1368683610ab7565b611fca906127aa565b91611fd4836127d7565b611fde908a6128f2565b93898551611feb90612a16565b97602087019485519560408901918251986120059061315f565b9190508a519251935194369061201a92610ab7565b61202395612ac0565b946060015161203190612c41565b9561203b92612d4e565b946120446108db565b60ff909916895260ff16602089015260408801526060870152608086015260a085015260c084015265ffffffffffff1660e083015265ffffffffffff1661010082015290565b90805f5260026020526120b18260405f20906001600160a01b03165f5260205260405f2090565b5491821561189a575f19830191838311610553575f828152600160205260409020545f19810191908211610553575f94848484612110956118359803612126575b509050612101915060016134a7565b6002905f5260205260405f2090565b906001600160a01b03165f5260205260405f2090565b6121469261210161213c6121109385600161345a565b8092856001613489565b555f8084816120f2565b81601f820112156101235780519061216782610918565b9261217560405194856108a9565b8284526020838301011161012357815f9260208093018386015e8301015290565b51906101c8826101ac565b9080601f830112156101235781516121b881610fb3565b926121c660405194856108a9565b81845260208085019260051b82010192831161012357602001905b8282106121ee5750505090565b81518152602091820191016121e1565b9060e0828203126101235781516001600160f81b0319811681036101235792602083015167ffffffffffffffff8111610123578261223d918501612150565b92604081015167ffffffffffffffff8111610123578361225e918301612150565b9260608201519261227160808401612196565b9260a08101519260c082015167ffffffffffffffff811161012357610a4b92016121a1565b90923093306124bf575b60405190600119858201013560f01c94600e830196869187810384016041198101976119015f5260408960203789158a604201841017816042601e20181761247f57507f5479706564446174615369676e2800000000000000000000000000000000000086526001198101999889818c82378188016028600e8201526029600d8201515f1a03612429575b506f07fffffe000000000000010000000000919250999899515f1a1c5b88515f1a602881146123695790651201000000016001921c17980197612348565b50929496999086986040610a4b9b83605c96989a957f20636f6e74656e74732c737472696e67206e616d652c737472696e670000000085527f2076657273696f6e2c75696e7432353620636861696e49642c61646472657373601c8601527f20766572696679696e67436f6e74726163742c627974657333322073616c7429603c8601528785013788370103018620835260e08320604052600116604201601e2092604119910301935b604052612dcb576124249033612ddc565b612dcb565b60015f5b016029600d82840301515f1a14848210111561244b5760019061242d565b6028915080806040600e936f07fffffe000000000000010000000000970397886041199101010185378a010153829161232b565b949699505095505050610a4b94505f907f983e65e5148e570cd828ead231ee759a8d7958721a768f93bc4483ba005c32de5f5260205260405f2091612413565b6040516342580cb760e11b815294505f85600481335afa8015611455575f955f5f905f925f9461252e575b50906001600160a01b039291604051996020815191012060408b01526020815191012060608a015260808901521660a087015260c086015260e085016040526122a0565b925050506001600160a01b03965061255891503d805f833e61255081836108a9565b8101906121fe565b509399939450929091906124ea565b92915f933a1561257657505050565b90919293503a3a5260203a3a386d378edcd5b5b0a24f5342d8c1048561fffffa503a51156125b7575b610f60610a4b936125af33610d48565b933691610ab7565b60405192631626ba7e3a526d378edcd5b5b0a24f5342d8c1048560205260408052454561ffff011790815a106d378edcd5b5b0a24f5342d8c1048584141761261857610a4b94610f60923a906064601c3a923090fa5060405293505061259f565bfe5b9060206042926080830151611db06001600160a01b03855116610cf46040870151936060880151604051958694898601988991926001600160a01b0360a09497969592978160c08601997f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98752166020860152166040840152606083015260808201520152565b6040519060e0820182811067ffffffffffffffff8211176108a457604052606060c0835f81525f60208201525f60408201525f838201525f60808201525f60a08201520152565b9190915f92604051918151806040146127405760411461270757505050565b602092945060608201515f1a835260408201516060525b5f5201516040526020604060805f60015afa505f6060523d6060185191604052565b5060209294507f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040830151601b8160ff1c0185521660605261271e565b8051821015611eb05760209160051b010190565b6040519061279f82610888565b5f6020838281520152565b6127b2612792565b506020815191604051926127c584610888565b835201602082015290565b1561012357565b906127e182612f08565b15610123576127ef82612f28565b916127f983610fb3565b9061280760405192836108a9565b838252601f1961281685610fb3565b015f5b8181106128a65750506020810161283a815161283481612f89565b90610e2c565b945f905b808210612860575050610a4b929394612858915190611916565b9051146127d0565b909561289e81612871600193612ff4565b9061287a6108fa565b82815281602082015261288d8b8a61277e565b526128988a8961277e565b50610e2c565b96019061283e565b6020906128b1612792565b82828701015201612819565b604051906080820182811067ffffffffffffffff8211176108a457604052606080835f81525f60208201525f60408201520152565b60ff906128fd6128bd565b5016806129775750600560069061295961295360079460ff61294b612935826129436129358261293b6129358260089e5b168a61277e565b51613072565b9c168761277e565b98168461277e565b94169061277e565b51613123565b91612962610909565b93845260208401526040830152606082015290565b6002036129ab576007600990612959612953600a9460ff61294b612935826129436129358261293b61293582600b9e61292e565b60405162461bcd60e51b815260206004820152602860248201527f547856616c696461746f724c69623a3a20756e737570706f727465642065766d60448201527f20747820747970650000000000000000000000000000000000000000000000006064820152608490fd5b60258110612a7757612a278161314d565b7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8116810361055357612a6c612a67610a4b93612a719360011b90611916565b6118cc565b610e10565b60ff1690565b60018111612a7157601b81018091116105535760ff1690565b805191908290602001825e015f815290565b6001906001600160f81b0319610a4b949360f81b1681520190612a90565b94612b1a9192612b10612b08612afc612b1f94612af5612ae9612aee612ae9612b259c9d613634565b6136b0565b5192613634565b5190610e2c565b612af5612ae98a613634565b918551611916565b9283918551611916565b611916565b91613290565b9060ff831660028103612b5d575050611d20612b4c610cf492612b46610934565b90613316565b604051928391602083019586612aa2565b91925090612bd75760258110612bca57612bc091612bbb612b88612b83612bb59461314d565b61318b565b6111e3612b96612ae961358f565b612bb5612ba4612ae961358f565b916040519788956020870190612a90565b90612a90565b613316565b6020815191012090565b50612bc090612b46610934565b60405162461bcd60e51b8152602060048201526024808201527f547856616c696461746f724c69623a3a20756e737570706f727465642074782060448201527f74797065000000000000000000000000000000000000000000000000000000006064820152608490fd5b6020815110612c83578051601f19810190811161055357612c619161322d565b602081519101519060208110612c75575090565b5f199060200360031b1b1690565b608460405162461bcd60e51b815260206004820152602560248201527f54784465636f6465723a3a2063616c6c44617461206c656e67746820746f6f2060448201527f73686f72740000000000000000000000000000000000000000000000000000006064820152fd5b90612cf782610fb3565b612d0460405191826108a9565b8281528092612d15601f1991610fb3565b0190602036910137565b60ff168015610553575f190190565b359060208110612c75575090565b60ff5f199116019060ff821161055357565b929190612d5d60ff8316612ced565b93600b198201828111610553575f198101908111610553579291925b60ff8316612d875750505050565b612dbf81612dab612da582612d9e612dc5966118db565b89886109ba565b90612d2e565b612db960ff61292e88612d3c565b526118db565b92612d1f565b91612d79565b610f60610a4b93926125af33610d48565b5f6001600160a01b03916004604051809481936342580cb760e11b8352165afa9081156114555760a0915f915f5f915f93612e7a575b50604051937f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f855260208151910120602085015260208151910120604084015260608301526080820152206719010000000000005f52601a52603a526042601820905f603a52565b92505050612e9291503d805f833e61255081836108a9565b509394509250905f612e12565b9291612ead60ff8216612ced565b935f198301838111610553575b60ff8316612ec85750505050565b601f19810181811161055357612ee6612da5612f02938388876109ba565b612efb60ff612ef487612d3c565b168961277e565b5292612d1f565b91612eba565b805115612f2357602060c0910151515f1a10611aad57600190565b505f90565b805115612f23575f9060208101908151612f4181612f89565b8101809111610553579151905181018091116105535791905b828110612f675750905090565b612f7081612ff4565b810180911161055357612f8390916118a1565b90612f5a565b515f1a6080811015612f9a57505f90565b60b881108015612fde575b15612fb05750600190565b60c0811015612fcf57610a4b90612fca9060b75b90611916565b610e02565b610a4b90612fca9060f7612fc4565b5060c08110158015612fa5575060f88110612fa5565b80515f1a906080821015613009575050600190565b60b882101561301f5750612fca610a4b916118f9565b60c08210156130425760010151602082900360b7016101000a90040160b5190190565b60f88210156130585750612fca610a4b916118ea565b60010151602082900360f7016101000a90040160f5190190565b805180151590816130a8575b50156101235761308d9061315f565b9051906020811061309c575090565b6020036101000a900490565b6021915011155f61307e565b604080519091906130c583826108a9565b60208152918290601f190190369060200137565b604080519091906130ea83826108a9565b6001815291601f1901366020840137565b9061310582610918565b61311260405191826108a9565b8281528092612d15601f1991610918565b80511561012357613136610a4b9161315f565b613142819392936130fb565b9283602001906134fe565b60221981019081116105535760011c90565b90602082019161316f8351612f89565b9251908382018092116105535751928303928311610553579190565b612ae9610a4b91613634565b1561319e57565b606460405162461bcd60e51b815260206004820152600e60248201527f736c6963655f6f766572666c6f770000000000000000000000000000000000006044820152fd5b156131e957565b606460405162461bcd60e51b815260206004820152601160248201527f736c6963655f6f75744f66426f756e64730000000000000000000000000000006044820152fd5b906132386001613197565b815160208201808311610553576132509110156131e2565b6040519160208084019260408501920101905b80831061327d57505060208252601f01601f191660405290565b9091602080918451815201920190613263565b916132a081601f81011015613197565b6132b683516132af8385610e2c565b11156131e2565b806132ce575050506040515f81526020810160405290565b60405192601f821692831560051b80858701019484860193010101905b8084106133035750508252601f01601f191660405290565b90926020809185518152019301906132eb565b61333190610cf4612bb5936040519485936020850190612a90565b805190603882101561338557612bb591610cf4610a4b926001600160f81b031961336460c061335e6130d9565b95610e2c565b60f81b165f1a61337384613571565b535b6040519485936020850190612a90565b916001915f5b6133958483610db7565b156133b2576133a66133ac916118a1565b93610deb565b9261338b565b9092509290926133c96133c482610e02565b6130fb565b926001600160f81b03196133e66133e160c085610e2c565b610e1e565b60f81b165f1a6133f585613571565b5360015b8281111561341457505050612bb591610cf4610a4b92613375565b806001600160f81b031961343f612a716134396134346134559689611916565b6134ef565b86610db7565b60f81b165f1a61344f828861357e565b536118a1565b6133f9565b905f5260205260405f209081548110156134795760010160051b015490565b638277484f5f526020526024601cfd5b905f5260205260405f209081548110156134795760010160051b0155565b905f5260205260405f2080549081156134eb575f198201918083116105535781548310156134da575f9060051b82015555565b82638277484f5f526020526024601cfd5b5050565b601f8111610553576101000a90565b9091801561356c575b602081101561353c578061351a57505050565b61352961343461352e92611908565b6118af565b905182518216911916179052565b919080518252602081018091116105535790602081018091116105535791601f1981019081111561350757610da3565b505050565b805115611eb05760200190565b908151811015611eb0570160200190565b6135976130b4565b905f60208301525f915b60208310613603575b6135b66133c484611908565b905f5b82518110156135fc576001906135e96135db6135d4886118a1565b978561357e565b516001600160f81b03191690565b5f1a6135f5828661357e565b53016135b9565b5090925050565b916136216136146135db838661357e565b6001600160f81b03191690565b61362e57600101916135a1565b916135aa565b9061363d6130b4565b9160208301525f915b6020831061368c575b61365b6133c484611908565b905f5b82518110156135fc576001906136796135db6135d4886118a1565b5f1a613685828661357e565b530161365e565b9161369d6136146135db838661357e565b6136aa5760010191613646565b9161364f565b805160018114908161374a575b50156136c65790565b6136d08151613762565b6040519181518084526020840190840191602083019160208501905b83811061373a5750508051809286518201875293019260208085019201905b82811061372a5750509251603f91011590910101601f19166040525090565b815181526020918201910161370b565b81518152602091820191016136ec565b905015611eb0576080602082015160f81c105f6136bd565b603881101561379a576001600160f81b031961378760806137816130d9565b93610e2c565b60f81b165f1a61379682613571565b5390565b6001915f5b6137a98484610db7565b156137c0576133a66137ba916118a1565b9261379f565b9092506137cf6133c482610e02565b916001600160f81b03196137e76133e1608085610e2c565b60f81b165f1a6137f684613571565b5360015b828111156138085750505090565b806001600160f81b0319613828612a716134396134346138389689611916565b60f81b165f1a61344f828761357e565b6137fa56fea164736f6c634300081b000a
Loading...
Loading
Loading...
Loading

Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.