ETH Price: $4,384.18 (-3.09%)

Contract

0x02bF9c54B9A8Ee3103C53ebB3690Fb8cf177d70e

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Deposit100718692025-09-02 12:04:4037 days ago1756814680IN
0x02bF9c54...cf177d70e
0 ETH0.000001350.00000026
Deposit36820142025-06-20 13:07:05111 days ago1750424825IN
0x02bF9c54...cf177d70e
0 ETH0.000000280.0012003

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
StableToVaultZapper

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 1 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.24;

import {ERC20} from "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC4626} from "openzeppelin-contracts/contracts/interfaces/IERC4626.sol";
import {BoldConverter, IBoldToken} from "../Dependencies/BoldConverter.sol";
import {IERC7540Deposit, IERC7540Redeem} from "../Interfaces/IERC7540.sol";

interface IVaultSafe {
    function safe() external view returns (address);
}

contract StableToVaultZapper {
    using SafeERC20 for IERC20Metadata;

    BoldConverter private immutable _boldConverter;
    address private immutable sbvUSD;

    constructor(BoldConverter boldConverter, address vault) {
        require(vault != address(0), "Invalid vault");

        _boldConverter = boldConverter;
        sbvUSD = vault;

        // approve vault to pull bold
        IERC20Metadata(address(boldConverter.bvUSD())).approve(
            address(sbvUSD),
            type(uint256).max
        );
    }

    function deposit(
        IERC20Metadata asset,
        uint256 amount
    ) external returns (uint256 shares) {
        require(_boldConverter.isValidPath(asset), "Invalid asset");

        // pull asset
        asset.safeTransferFrom(msg.sender, address(this), amount);

        // approve converter
        asset.safeIncreaseAllowance(address(_boldConverter), amount);

        // exchange for bvUSD
        uint256 boldAmount = _boldConverter.deposit(asset, amount);

        // stake for sbvUSD
        shares = IERC4626(sbvUSD).deposit(boldAmount, msg.sender);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.0;

import "../token/ERC20/IERC20.sol";
import "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * _Available since v4.7._
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 3 of 15 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.24;

import {ERC20} from "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IBoldToken} from "../Interfaces/IBoldToken.sol";
import "./Owned.sol";

contract BoldConverter is Owned {
    uint256 public constant MAX_FEE = 10000;

    IBoldToken public bvUSD;

    struct Path {
        address underlyingReceiver;
        uint256 underlyingDecimals;
        uint256 withdrawalFee;
    }

    mapping(IERC20Metadata => Path) private _underlyingPaths;

    event NewPath(IERC20Metadata indexed underlying);
    event DeletedPath(IERC20Metadata indexed underlying);

    constructor(
        IERC20Metadata[] memory underlyings_,
        Path[] memory paths_,
        address bvUSD_
    ) Owned(msg.sender) {
        _setPaths(underlyings_, paths_);
        bvUSD = IBoldToken(bvUSD_);
    }

    function isValidPath(
        IERC20Metadata underlying
    ) external view returns (bool) {
        return _underlyingPaths[underlying].underlyingReceiver != address(0);
    }

    function getPath(
        IERC20Metadata underlying
    ) external view returns (Path memory path) {
        path = _underlyingPaths[underlying];
    }

    // amount in underlying token decimals
    function deposit(
        IERC20Metadata underlying,
        uint256 amount
    ) external returns (uint256 boldAmount) {
        Path memory path = _underlyingPaths[underlying];
        require(path.underlyingReceiver != address(0), "Invalid path");

        // pull underlying
        SafeERC20.safeTransferFrom(
            underlying,
            msg.sender,
            path.underlyingReceiver,
            amount
        );

        // scale to 18 decimals
        boldAmount = amount * 10 ** (18 - path.underlyingDecimals);

        // mint bvUSD
        bvUSD.mint(msg.sender, boldAmount);
    }

    function withdraw(
        IERC20Metadata underlying,
        uint256 amount,
        address receiver
    ) external returns (uint256 underlyingOut) {
        Path memory path = _underlyingPaths[underlying];
        require(path.underlyingReceiver != address(0), "Invalid path");

        // burn bvUSD
        bvUSD.burn(msg.sender, amount);

        // scale amount
        uint256 withdrawalAmount = amount /
            (10 ** (18 - path.underlyingDecimals));

        // scale amount and subtract fee
        underlyingOut =
            withdrawalAmount -
            ((withdrawalAmount * path.withdrawalFee) / MAX_FEE);

        // transfer underlyings
        SafeERC20.safeTransferFrom(
            underlying,
            path.underlyingReceiver,
            receiver,
            underlyingOut
        );
    }

    function deletePaths(
        IERC20Metadata[] memory underlyings
    ) external onlyOwner {
        for (uint i = 0; i < underlyings.length; i++) {
            delete _underlyingPaths[underlyings[i]];

            emit DeletedPath(underlyings[i]);
        }
    }

    function setPaths(
        IERC20Metadata[] memory underlyings,
        Path[] memory paths
    ) external onlyOwner {
        _setPaths(underlyings, paths);
    }

    function _setPaths(
        IERC20Metadata[] memory underlyings,
        Path[] memory paths
    ) internal {
        uint256 length = underlyings.length;
        require(length == paths.length, "Invalid length");

        for (uint i = 0; i < length; i++) {
            Path memory path = paths[i];

            require(path.withdrawalFee <= MAX_FEE, "Invalid fee");
            require(path.underlyingReceiver != address(0), "Invalid receiver");

            IERC20Metadata underlying = underlyings[i];

            path.underlyingDecimals = underlying.decimals();
            require(
                path.underlyingDecimals <= 18,
                "Max 18 underlying decimals"
            );

            _underlyingPaths[underlying] = path;

            emit NewPath(underlying);
        }
    }
}

// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25

pragma solidity 0.8.24;

import "../Interfaces/IOwned.sol";

// https://docs.synthetix.io/contracts/source/contracts/owned
contract Owned is IOwned {
    address public override owner;
    address public override nominatedOwner;

    event OwnerNominated(address newOwner);
    event OwnerChanged(address oldOwner, address newOwner);

    constructor(address _owner) {
        require(_owner != address(0), "Owned/owner-zero");
        owner = _owner;

        emit OwnerChanged(address(0), _owner);
    }

    function nominateNewOwner(address _owner) external virtual override onlyOwner {
        nominatedOwner = _owner;

        emit OwnerNominated(_owner);
    }

    function acceptOwnership() external virtual override {
        require(msg.sender == nominatedOwner, "Owned/not-nominated");

        emit OwnerChanged(owner, nominatedOwner);

        owner = nominatedOwner;
        nominatedOwner = address(0);
    }

    modifier onlyOwner() {
        _onlyOwner();
        _;
    }

    function _onlyOwner() private view {
        require(msg.sender == owner, "Owned/not-owner");
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol";
import "openzeppelin-contracts/contracts/interfaces/IERC5267.sol";

import "./IOwned.sol";

interface IBoldToken is IERC20Metadata, IERC20Permit, IOwned, IERC5267 {
    function mint(address _account, uint256 _amount) external;

    function burn(address _account, uint256 _amount) external;

    function sendToPool(address _sender, address poolAddress, uint256 _amount) external;

    function returnFromPool(address poolAddress, address user, uint256 _amount) external;

    function setCollateralRegistry(address _collateralRegistryAddress) external;

    function setMinter(address minter, bool isMinter) external;

    function setBurner(address burner, bool isBurner) external;

    function setStabilityPool(address stabilityPool, bool isStabilityPool) external;

    function isMinter(address minter) external view returns (bool);

    function isBurner(address burner) external view returns (bool);

    function isStabilityPool(address stabilityPool) external view returns (bool);
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.5.0;

interface IERC7540Operator {
    /**
     * @dev The event emitted when an operator is set.
     *
     * @param controller The address of the controller.
     * @param operator The address of the operator.
     * @param approved The approval status.
     */
    event OperatorSet(address indexed controller, address indexed operator, bool approved);

    /**
     * @dev Sets or removes an operator for the caller.
     *
     * @param operator The address of the operator.
     * @param approved The approval status.
     * @return Whether the call was executed successfully or not
     */
    function setOperator(address operator, bool approved) external returns (bool);

    /**
     * @dev Returns `true` if the `operator` is approved as an operator for an `controller`.
     *
     * @param controller The address of the controller.
     * @param operator The address of the operator.
     * @return status The approval status
     */
    function isOperator(address controller, address operator) external view returns (bool status);
}

interface IERC7540Deposit {
    event DepositRequest(
        address indexed controller, address indexed owner, uint256 indexed requestId, address sender, uint256 assets
    );
    /**
     * @dev Transfers assets from sender into the Vault and submits a Request for asynchronous deposit.
     *
     * - MUST support ERC-20 approve / transferFrom on asset as a deposit Request flow.
     * - MUST revert if all of assets cannot be requested for deposit.
     * - owner MUST be msg.sender unless some unspecified explicit approval is given by the caller,
     *    approval of ERC-20 tokens from owner to sender is NOT enough.
     *
     * @param assets the amount of deposit assets to transfer from owner
     * @param controller the controller of the request who will be able to operate the request
     * @param owner the source of the deposit assets
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault's underlying asset token.
     */

    function requestDeposit(uint256 assets, address controller, address owner) external returns (uint256 requestId);

    /**
     * @dev Returns the amount of requested assets in Pending state.
     *
     * - MUST NOT include any assets in Claimable state for deposit or mint.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
     */
    function pendingDepositRequest(uint256 requestId, address controller)
        external
        view
        returns (uint256 pendingAssets);

    /**
     * @dev Returns the amount of requested assets in Claimable state for the controller to deposit or mint.
     *
     * - MUST NOT include any assets in Pending state.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
     */
    function claimableDepositRequest(uint256 requestId, address controller)
        external
        view
        returns (uint256 claimableAssets);

    /**
     * @dev Mints shares Vault shares to receiver by claiming the Request of the controller.
     *
     * - MUST emit the Deposit event.
     * - controller MUST equal msg.sender unless the controller has approved the msg.sender as an operator.
     */
    function deposit(uint256 assets, address receiver, address controller) external returns (uint256 shares);

    /**
     * @dev Mints exactly shares Vault shares to receiver by claiming the Request of the controller.
     *
     * - MUST emit the Deposit event.
     * - controller MUST equal msg.sender unless the controller has approved the msg.sender as an operator.
     */
    function mint(uint256 shares, address receiver, address controller) external returns (uint256 assets);
}

interface IERC7540Redeem {
    event RedeemRequest(
        address indexed controller, address indexed owner, uint256 indexed requestId, address sender, uint256 assets
    );

    /**
     * @dev Assumes control of shares from sender into the Vault and submits a Request for asynchronous redeem.
     *
     * - MUST support a redeem Request flow where the control of shares is taken from sender directly
     *   where msg.sender has ERC-20 approval over the shares of owner.
     * - MUST revert if all of shares cannot be requested for redeem.
     *
     * @param shares the amount of shares to be redeemed to transfer from owner
     * @param controller the controller of the request who will be able to operate the request
     * @param owner the source of the shares to be redeemed
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault's share token.
     */
    function requestRedeem(uint256 shares, address controller, address owner) external returns (uint256 requestId);

    /**
     * @dev Returns the amount of requested shares in Pending state.
     *
     * - MUST NOT include any shares in Claimable state for redeem or withdraw.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
     */
    function pendingRedeemRequest(uint256 requestId, address controller)
        external
        view
        returns (uint256 pendingShares);

    /**
     * @dev Returns the amount of requested shares in Claimable state for the controller to redeem or withdraw.
     *
     * - MUST NOT include any shares in Pending state for redeem or withdraw.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT revert unless due to integer overflow caused by an unreasonably large input.
     */
    function claimableRedeemRequest(uint256 requestId, address controller)
        external
        view
        returns (uint256 claimableShares);

    /**
     * @notice Fulfills a redeem request of the controller to allow the controller to withdraw their assets
     * @param shares The amount of shares to redeem
     * @param controller The controller to redeem for
     * @return assets The amount of assets claimable by the controller
     */
    function fulfillRedeem(
        uint256 shares,
        address controller
    ) external returns (uint256);

    /**
     * @notice Cancels a redeem request of the controller
     * @param controller The controller to cancel the redeem request of
     * @dev This will transfer the pending shares back to the receiver
     */
    function cancelRedeemRequest(
        address controller
    ) external; 
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IOwned {
    function owner() external view returns (address);

    function nominatedOwner() external view returns (address);

    function nominateNewOwner(address owner) external;

    function acceptOwnership() external;
}

Settings
{
  "evmVersion": "cancun",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": true,
    "runs": 1
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "openzeppelin/=lib/V2-gov/lib/openzeppelin-contracts/",
    "@chimera/=lib/V2-gov/lib/chimera/src/",
    "@openzeppelin/contracts/=lib/V2-gov/lib/openzeppelin-contracts/contracts/",
    "Solady/=lib/Solady/src/",
    "V2-gov/=lib/V2-gov/",
    "chimera/=lib/V2-gov/lib/chimera/src/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "v4-core/=lib/V2-gov/lib/v4-core/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"contract BoldConverter","name":"boldConverter","type":"address"},{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"contract IERC20Metadata","name":"asset","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

60c060405234801561000f575f80fd5b5060405161090b38038061090b83398101604081905261002e9161017d565b6001600160a01b0381166100785760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a59081d985d5b1d609a1b604482015260640160405180910390fd5b6001600160a01b03808316608081905290821660a052604080516323d507ad60e21b81529051638f541eb4916004808201926020929091908290030181865afa1580156100c7573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100eb91906101b5565b60a05160405163095ea7b360e01b81526001600160a01b0391821660048201525f19602482015291169063095ea7b3906044016020604051808303815f875af115801561013a573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061015e91906101d7565b5050506101f6565b6001600160a01b038116811461017a575f80fd5b50565b5f806040838503121561018e575f80fd5b825161019981610166565b60208401519092506101aa81610166565b809150509250929050565b5f602082840312156101c5575f80fd5b81516101d081610166565b9392505050565b5f602082840312156101e7575f80fd5b815180151581146101d0575f80fd5b60805160a0516106e76102245f395f61021701525f8181607301528181610143015261018101526106e75ff3fe608060405234801561000f575f80fd5b5060043610610029575f3560e01c806347e7ef241461002d575b5f80fd5b61004061003b366004610592565b610052565b60405190815260200160405180910390f35b604051634886be9f60e01b81526001600160a01b0383811660048301525f917f000000000000000000000000000000000000000000000000000000000000000090911690634886be9f90602401602060405180830381865afa1580156100ba573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100de91906105c7565b61011f5760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a5908185cdcd95d609a1b60448201526064015b60405180910390fd5b6101346001600160a01b038416333085610291565b6101686001600160a01b0384167f000000000000000000000000000000000000000000000000000000000000000084610302565b6040516311f9fbc960e21b81525f906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906347e7ef24906101b890879087906004016105ed565b6020604051808303815f875af11580156101d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101f89190610606565b604051636e553f6560e01b8152600481018290523360248201529091507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690636e553f65906044016020604051808303815f875af1158015610265573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102899190610606565b949350505050565b6040516001600160a01b03808516602483015283166044820152606481018290526102fc9085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261039d565b50505050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa15801561034f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103739190610606565b90506102fc8463095ea7b360e01b8561038c868661061d565b6040516024016102c59291906105ed565b5f6103f1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166104759092919063ffffffff16565b905080515f148061041157508080602001905181019061041191906105c7565b6104705760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610116565b505050565b606061028984845f85855f80866001600160a01b0316858760405161049a9190610664565b5f6040518083038185875af1925050503d805f81146104d4576040519150601f19603f3d011682016040523d82523d5f602084013e6104d9565b606091505b50915091506104ea878383876104f5565b979650505050505050565b606083156105635782515f0361055c576001600160a01b0385163b61055c5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610116565b5081610289565b61028983838151156105785781518083602001fd5b8060405162461bcd60e51b8152600401610116919061067f565b5f80604083850312156105a3575f80fd5b82356001600160a01b03811681146105b9575f80fd5b946020939093013593505050565b5f602082840312156105d7575f80fd5b815180151581146105e6575f80fd5b9392505050565b6001600160a01b03929092168252602082015260400190565b5f60208284031215610616575f80fd5b5051919050565b8082018082111561063c57634e487b7160e01b5f52601160045260245ffd5b92915050565b5f5b8381101561065c578181015183820152602001610644565b50505f910152565b5f8251610675818460208701610642565b9190910192915050565b602081525f825180602084015261069d816040850160208701610642565b601f01601f1916919091016040019291505056fea2646970667358221220c06c2b6ed55b227061d23b44fa4823d39afe2b4efd16416ffb20aad29f18315b64736f6c63430008180033000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5300000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610029575f3560e01c806347e7ef241461002d575b5f80fd5b61004061003b366004610592565b610052565b60405190815260200160405180910390f35b604051634886be9f60e01b81526001600160a01b0383811660048301525f917f000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5390911690634886be9f90602401602060405180830381865afa1580156100ba573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906100de91906105c7565b61011f5760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a5908185cdcd95d609a1b60448201526064015b60405180910390fd5b6101346001600160a01b038416333085610291565b6101686001600160a01b0384167f000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5384610302565b6040516311f9fbc960e21b81525f906001600160a01b037f000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5316906347e7ef24906101b890879087906004016105ed565b6020604051808303815f875af11580156101d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101f89190610606565b604051636e553f6560e01b8152600481018290523360248201529091507f00000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b6001600160a01b031690636e553f65906044016020604051808303815f875af1158015610265573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102899190610606565b949350505050565b6040516001600160a01b03808516602483015283166044820152606481018290526102fc9085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b03199093169290921790915261039d565b50505050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa15801561034f573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103739190610606565b90506102fc8463095ea7b360e01b8561038c868661061d565b6040516024016102c59291906105ed565b5f6103f1826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166104759092919063ffffffff16565b905080515f148061041157508080602001905181019061041191906105c7565b6104705760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610116565b505050565b606061028984845f85855f80866001600160a01b0316858760405161049a9190610664565b5f6040518083038185875af1925050503d805f81146104d4576040519150601f19603f3d011682016040523d82523d5f602084013e6104d9565b606091505b50915091506104ea878383876104f5565b979650505050505050565b606083156105635782515f0361055c576001600160a01b0385163b61055c5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610116565b5081610289565b61028983838151156105785781518083602001fd5b8060405162461bcd60e51b8152600401610116919061067f565b5f80604083850312156105a3575f80fd5b82356001600160a01b03811681146105b9575f80fd5b946020939093013593505050565b5f602082840312156105d7575f80fd5b815180151581146105e6575f80fd5b9392505050565b6001600160a01b03929092168252602082015260400190565b5f60208284031215610616575f80fd5b5051919050565b8082018082111561063c57634e487b7160e01b5f52601160045260245ffd5b92915050565b5f5b8381101561065c578181015183820152602001610644565b50505f910152565b5f8251610675818460208701610642565b9190910192915050565b602081525f825180602084015261069d816040850160208701610642565b601f01601f1916919091016040019291505056fea2646970667358221220c06c2b6ed55b227061d23b44fa4823d39afe2b4efd16416ffb20aad29f18315b64736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d5300000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b

-----Decoded View---------------
Arg [0] : boldConverter (address): 0xD308D6189510315b0F92F214102F1b684Fa11d53
Arg [1] : vault (address): 0x24E2aE2f4c59b8b7a03772142d439fDF13AAF15b

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000d308d6189510315b0f92f214102f1b684fa11d53
Arg [1] : 00000000000000000000000024e2ae2f4c59b8b7a03772142d439fdf13aaf15b


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0x02bF9c54B9A8Ee3103C53ebB3690Fb8cf177d70e
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.