ETH Price: $4,438.20 (-0.18%)

Contract

0x97Fd9C66381EC72944439B8EFC9CeAdF730501Ef

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Approve120534812025-09-25 10:31:3213 days ago1758796292IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026
Approve120527132025-09-25 10:18:4413 days ago1758795524IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026
Approve120527122025-09-25 10:18:4313 days ago1758795523IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026
Approve120526762025-09-25 10:18:0713 days ago1758795487IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026
Approve120525662025-09-25 10:16:1713 days ago1758795377IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026
Approve120525322025-09-25 10:15:4313 days ago1758795343IN
0x97Fd9C66...F730501Ef
0 ETH0.000001390.00097026
Approve120524772025-09-25 10:14:4813 days ago1758795288IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026
Approve120524642025-09-25 10:14:3513 days ago1758795275IN
0x97Fd9C66...F730501Ef
0 ETH0.000001350.00000026

Latest 16 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
120522492025-09-25 10:11:0013 days ago1758795060
0x97Fd9C66...F730501Ef
6 wei
120522492025-09-25 10:11:0013 days ago1758795060
0x97Fd9C66...F730501Ef
0.04949504 ETH
120522492025-09-25 10:11:0013 days ago1758795060
0x97Fd9C66...F730501Ef
0.001 ETH
120521832025-09-25 10:09:5413 days ago1758794994
0x97Fd9C66...F730501Ef
0.0000099 ETH
120521832025-09-25 10:09:5413 days ago1758794994
0x97Fd9C66...F730501Ef
0.001 ETH
120518842025-09-25 10:04:5513 days ago1758794695
0x97Fd9C66...F730501Ef
0.000099 ETH
120518842025-09-25 10:04:5513 days ago1758794695
0x97Fd9C66...F730501Ef
0.01 ETH
120518622025-09-25 10:04:3313 days ago1758794673
0x97Fd9C66...F730501Ef
0.000099 ETH
120518622025-09-25 10:04:3313 days ago1758794673
0x97Fd9C66...F730501Ef
0.01 ETH
120518302025-09-25 10:04:0113 days ago1758794641
0x97Fd9C66...F730501Ef
0.000099 ETH
120518302025-09-25 10:04:0113 days ago1758794641
0x97Fd9C66...F730501Ef
0.01 ETH
120517592025-09-25 10:02:5013 days ago1758794570
0x97Fd9C66...F730501Ef
0.000099 ETH
120517592025-09-25 10:02:5013 days ago1758794570
0x97Fd9C66...F730501Ef
0.01 ETH
120517132025-09-25 10:02:0413 days ago1758794524
0x97Fd9C66...F730501Ef
0.000099 ETH
120517132025-09-25 10:02:0413 days ago1758794524
0x97Fd9C66...F730501Ef
0.01 ETH
120477732025-09-25 8:56:2413 days ago1758790584  Contract Creation0 ETH

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MemeTokenV3

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion, None license
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";

import {INonfungiblePositionManager} from "./interfaces/INonfungiblePositionManager.sol";
import {IUniswapV3Factory} from "./interfaces/IUniswapV3Factory.sol";
import {IMemeTokenV3} from "./interfaces/IMemeTokenV3.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

contract MemeTokenV3 is ERC20Burnable, IMemeTokenV3, ReentrancyGuard {
    CurveType public constant curveType = CurveType.ConstantProductV1;

    error InvalidMarketCapTarget();
    error PoolAlreadyExists();

    uint256 public initialTokenSupply;
    uint256 public virtualTokenReserves;
    uint256 public virtualCollateralReserves;
    uint256 public immutable virtualCollateralReservesInitial;

    uint256 public immutable feeBPS;
    uint256 public immutable dexFeeBPS;

    uint256 public immutable mcLowerLimit;
    uint256 public immutable mcUpperLimit;
    uint256 public immutable tokensMigrationThreshold;

    uint256 public immutable fixedMigrationFee;
    uint256 public immutable poolCreationFee;

    address public immutable creator;
    address public pair; // uniswap v3 pool address after migration
    address public immutable treasury;
    address public immutable dexTreasury;
    address public immutable factory;
    uint256 public positionTokenId;

    // Address to receive collected Uniswap V3 LP fees (token + WETH)
    address public lpFeeReceiver;

    bool public tradingStopped;
    bool public sendingToPairNotAllowed = true;

    // Snapshot of token balance when trading stopped (prevents donation attacks)
    uint256 private _migrationTokenBalance;

    uint256 public constant MULTIPLIER = 10_000;

    INonfungiblePositionManager public immutable positionManager;
    address public immutable WETH9;
    uint24 public immutable poolFee;

    int24 internal constant MIN_TICK = -887220;
    int24 internal constant MAX_TICK = 887220;

    // Uniswap V3 pool init code hash used to deterministically compute pool address
    // Source: @uniswap/v3-periphery/contracts/libraries/PoolAddress.sol
    bytes32 internal constant UNISWAP_V3_POOL_INIT_CODE_HASH =
        0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;

    modifier buyChecks() {
        if (tradingStopped) revert TradingStopped();
        _;
        _checkMcLower();
        _checkMcUpperLimit();
    }

    modifier sellChecks() {
        if (tradingStopped) revert TradingStopped();
        _;
    }

    modifier onlyFactory() {
        if (msg.sender != factory) revert OnlyFactory();
        _;
    }

    constructor(ConstructorParams memory _params) ERC20(_params.name, _params.symbol) {
        _mint(address(this), _params.totalSupply);

        initialTokenSupply = _params.totalSupply;
        virtualCollateralReserves = _params.virtualCollateralReserves;
        virtualCollateralReservesInitial = _params.virtualCollateralReserves;
        virtualTokenReserves = _params.virtualTokenReserves;

        creator = _params.creator;

        feeBPS = _params.feeBasisPoints;
        dexFeeBPS = _params.dexFeeBasisPoints;

        treasury = _params.treasury;
        dexTreasury = _params.dexTreasury;

        fixedMigrationFee = _params.migrationFeeFixed;
        poolCreationFee = _params.poolCreationFee;

        mcLowerLimit = _params.mcLowerLimit;
        mcUpperLimit = _params.mcUpperLimit;
        tokensMigrationThreshold = _params.tokensMigrationThreshold;

        positionManager = INonfungiblePositionManager(_params.positionManager);
        WETH9 = INonfungiblePositionManager(_params.positionManager).WETH9();
        poolFee = _params.poolFee;

        factory = msg.sender;

        // Set LP fee receiver from params
        lpFeeReceiver = _params.lpFeeReceiver;

        // Create and initialize the Uniswap V3 pool immediately to pin the initial price
        (address token0, address token1) = address(this) < WETH9 ? (address(this), WETH9) : (WETH9, address(this));
        // Estimate reserves at migration threshold (when mc = mcLowerLimit) by solving:
        // 1) vtAtMcLower * vcAtMcLower = vt0 * vc0 (constant product invariant)
        // 2) mcLowerLimit = (vcAtMcLower * initialTokenSupply) / vtAtMcLower
        uint256 vt0 = virtualTokenReserves;
        uint256 vc0 = virtualCollateralReserves;
        uint256 migrationThreshold = _params.tokensMigrationThreshold;
        (uint256 vtAtMcLower, uint256 vcAtMcLower) = _reservesAfterTokensSold(vt0, vc0, migrationThreshold);

        uint160 sqrtPriceX96Init = _getSqrtPriceX96(vtAtMcLower, vcAtMcLower, token0 == address(this));
        pair = _initOrValidatePool(token0, token1, sqrtPriceX96Init);
    }

    function _reservesAfterTokensSold(uint256 vt0, uint256 vc0, uint256 tokensSold)
        internal
        pure
        returns (uint256 vtAtMcLower, uint256 vcAtMcLower)
    {
        if (tokensSold == 0 || tokensSold >= vt0) revert InvalidMarketCapTarget();
        vtAtMcLower = vt0 - tokensSold;
        if (vtAtMcLower == 0) revert InvalidMarketCapTarget();
        uint256 product = Math.mulDiv(vt0, vc0, 1);
        vcAtMcLower = product / vtAtMcLower;
    }

    function buyExactIn(uint256 _amountOutMin)
        external
        payable
        onlyFactory
        buyChecks
        returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee)
    {
        if (balanceOf(address(this)) <= _amountOutMin) revert InsufficientTokenReserves();

        collateralToPayWithFee = msg.value;
        uint256 collateralToSpendMinusFee;
        (collateralToSpendMinusFee, helioFee, dexFee) = _calculateFeeFromTotalAmount(collateralToPayWithFee);

        _transferCollateral(treasury, helioFee);
        _transferCollateral(dexTreasury, dexFee);

        uint256 tokensOut =
            (collateralToSpendMinusFee * virtualTokenReserves) / (virtualCollateralReserves + collateralToSpendMinusFee);

        if (tokensOut < _amountOutMin) revert SlippageCheckFailed();

        virtualTokenReserves -= tokensOut;
        virtualCollateralReserves += collateralToSpendMinusFee;

        _transfer(address(this), msg.sender, tokensOut);
    }

    function sellExactIn(uint256 _tokenAmount, uint256 _amountCollateralMin)
        external
        payable
        onlyFactory
        sellChecks
        returns (uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee)
    {
        uint256 collateralToReceive =
            (_tokenAmount * virtualCollateralReserves) / (virtualTokenReserves + _tokenAmount);
        (helioFee, dexFee) = _calculateFee(collateralToReceive);
        collateralToReceiveMinusFee = collateralToReceive - helioFee - dexFee;
        _transferCollateral(treasury, helioFee);
        _transferCollateral(dexTreasury, dexFee);

        if (collateralToReceiveMinusFee < _amountCollateralMin) revert SlippageCheckFailed();

        virtualTokenReserves += _tokenAmount;
        virtualCollateralReserves -= collateralToReceive;

        _transferCollateral(msg.sender, collateralToReceiveMinusFee);
        _transfer(msg.sender, address(this), _tokenAmount);
    }

    function getAmountOutAndFee(uint256 _amountIn, uint256 _reserveIn, uint256 _reserveOut, bool _paymentTokenIsIn)
        external
        view
        returns (uint256 amountOut, uint256 fee)
    {
        if (_paymentTokenIsIn) {
            (uint256 amountInWithoutFee, uint256 helioFee, uint256 dexFee) = _calculateFeeFromTotalAmount(_amountIn);
            fee = helioFee + dexFee;

            amountOut = (amountInWithoutFee * _reserveOut) / (_reserveIn + amountInWithoutFee);
        } else {
            amountOut = (_amountIn * _reserveOut) / (_reserveIn + _amountIn);

            (uint256 helioFee, uint256 dexFee) = _calculateFee(amountOut);
            fee = helioFee + dexFee;
            amountOut -= fee;
        }
    }

    function migrate()
        external
        onlyFactory
        returns (uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount)
    {
        sendingToPairNotAllowed = false;

        uint256 tokensRemaining = _migrationTokenBalance;
        this.approve(address(positionManager), tokensRemaining);

        tokensToMigrate = tokensRemaining;
        tokensToBurn = tokensRemaining - tokensToMigrate;

        (uint256 treasuryFee, uint256 dexFee) = _splitFee(fixedMigrationFee);
        _transferCollateral(treasury, treasuryFee + poolCreationFee);
        _transferCollateral(dexTreasury, dexFee);

        _burn(address(this), tokensToBurn);

        collateralAmount =
            virtualCollateralReserves - virtualCollateralReservesInitial - treasuryFee - dexFee - poolCreationFee;

        // Determine token ordering
        (address token0, address token1) = address(this) < WETH9 ? (address(this), WETH9) : (WETH9, address(this));

        // Get pool address
        address poolAddr = IUniswapV3Factory(positionManager.factory()).getPool(token0, token1, poolFee);
        if (poolAddr != address(0)) {
            pair = poolAddr;
        }

        uint256 amount0Desired = token0 == address(this) ? tokensToMigrate : collateralAmount;
        uint256 amount1Desired = token0 == address(this) ? collateralAmount : tokensToMigrate;

        INonfungiblePositionManager.MintParams memory params = INonfungiblePositionManager.MintParams({
            token0: token0,
            token1: token1,
            fee: poolFee,
            tickLower: MIN_TICK,
            tickUpper: MAX_TICK,
            amount0Desired: amount0Desired,
            amount1Desired: amount1Desired,
            amount0Min: 0,
            amount1Min: 0,
            recipient: address(this),
            deadline: block.timestamp + 10
        });

        (uint256 tokenId,,,) = positionManager.mint{value: collateralAmount}(params);
        positionTokenId = tokenId;

        // Return any unspent ETH to treasury
        positionManager.refundETH();
        if (address(this).balance > 0) {
            _transferCollateral(treasury, address(this).balance);
        }

        // Claim any remaining token in the position manager (should be zero)
        positionManager.sweepToken(address(this), 0, address(this));
        // burn any remaining token in this contract
        uint256 remainingTokenBalance = balanceOf(address(this));
        if (remainingTokenBalance > 0) {
            _burn(address(this), remainingTokenBalance);
        }

        // Liquidity is locked by holding the NFT in this contract with no withdrawal path
    }

    function setLpFeeReceiver(address _receiver) external onlyFactory {
        require(_receiver != address(0), "lpFeeReceiver zero");
        lpFeeReceiver = _receiver;
    }

    function collectLpFees(uint128 amount0Max, uint128 amount1Max)
        external
        onlyFactory
        nonReentrant
        returns (uint256 amount0, uint256 amount1)
    {
        require(positionTokenId != 0, "not migrated");

        (amount0, amount1) = positionManager.collect(
            INonfungiblePositionManager.CollectParams({
                tokenId: positionTokenId,
                recipient: lpFeeReceiver,
                amount0Max: amount0Max,
                amount1Max: amount1Max
            })
        );
    }

    function getMarketCap() public view returns (uint256) {
        uint256 mc = (virtualCollateralReserves * 10 ** 18 * totalSupply()) / virtualTokenReserves;
        return mc / 10 ** 18;
    }

    function getMaxMarketCap() public view returns (uint256) {
        uint256 mc = (virtualCollateralReserves * 10 ** 18 * initialTokenSupply) / virtualTokenReserves;
        return mc / 10 ** 18;
    }

    function getCurveProgressBps() external view returns (uint256) {
        uint256 progress = ((initialTokenSupply - balanceOf(address(this))) * MULTIPLIER) / tokensMigrationThreshold;
        return progress < 100 ? 100 : (progress > MULTIPLIER ? MULTIPLIER : progress);
    }

    function _calculateFee(uint256 _amount) internal view returns (uint256 treasuryFee, uint256 dexFee) {
        treasuryFee = (_amount * feeBPS) / MULTIPLIER;
        dexFee = (treasuryFee * dexFeeBPS) / MULTIPLIER;
        treasuryFee -= dexFee;
    }

    function _calculateFeeFromTotalAmount(uint256 totalAmount)
        internal
        view
        returns (uint256 swapAmount, uint256 treasuryFee, uint256 dexFee)
    {
        // totalAmount = swapAmount + treasuryFee;  // From function _calculateFee
        // totalAmount = swapAmount + (swapAmount * feeBPS / MULTIPLIER)
        // totalAmount = swapAmount * ((MULTIPLIER + feeBPS) / MULTIPLIER)
        // swapAmount = totalAmount / ((MULTIPLIER + feeBPS) / MULTIPLIER)
        // swapAmount = (totalAmount * MULTIPLIER) / (MULTIPLIER + feeBPS);
        swapAmount = (totalAmount * MULTIPLIER) / (MULTIPLIER + feeBPS);

        treasuryFee = (swapAmount * feeBPS) / MULTIPLIER;
        dexFee = (treasuryFee * dexFeeBPS) / MULTIPLIER;
        treasuryFee -= dexFee;
    }

    function _splitFee(uint256 _feeAmount) internal view returns (uint256 treasuryFee, uint256 dexFee) {
        dexFee = (_feeAmount * dexFeeBPS) / MULTIPLIER;
        treasuryFee = _feeAmount - dexFee;
    }

    function _transferCollateral(address _to, uint256 _amount) internal {
        (bool sent,) = _to.call{value: _amount}("");
        if (!sent) revert FailedToSendETH();
    }

    function _checkMcUpperLimit() internal view {
        uint256 mc = getMaxMarketCap();

        if (mc > mcUpperLimit) revert MarketcapThresholdReached();
    }

    function _checkMcLower() internal {
        uint256 mc = getMaxMarketCap();

        if (mc > mcLowerLimit) {
            tradingStopped = true;
            // Snapshot token balance to prevent donation attacks during migration
            _migrationTokenBalance = balanceOf(address(this));
        }
    }

    function transfer(address to, uint256 amount) public override(ERC20, IERC20) returns (bool) {
        if (to == pair && sendingToPairNotAllowed) revert SendingToPairIsNotAllowedBeforeMigration();
        return super.transfer(to, amount);
    }

    function transferFrom(address from, address to, uint256 amount) public override(ERC20, IERC20) returns (bool) {
        if (to == pair && sendingToPairNotAllowed) revert SendingToPairIsNotAllowedBeforeMigration();
        return super.transferFrom(from, to, amount);
    }

    function _initOrValidatePool(address token0, address token1, uint160 targetSqrtPrice)
        internal
        returns (address pool)
    {
        address uniFactory = positionManager.factory();
        pool = IUniswapV3Factory(uniFactory).getPool(token0, token1, poolFee);

        if (pool != address(0)) {
            revert PoolAlreadyExists();
        }

        // Create and initialize the pool when none exists
        pool = positionManager.createAndInitializePoolIfNecessary(token0, token1, poolFee, targetSqrtPrice);
    }

    function _getSqrtPriceX96(uint256 amountToken, uint256 amountETH, bool token0IsThis)
        internal
        pure
        returns (uint160 priceX96)
    {
        // price = token1/token0
        // If token0 is this token, price = ETH / token
        // If token0 is WETH, price = token / ETH

        if (token0IsThis) {
            // price = sqrt(amountETH / amountToken) * 2^48 * 2^48 = sqrt(amountETH * 2^96 / amountToken) * 2^48
            priceX96 = uint160(_sqrt((amountETH << 96) / amountToken)) << 48;
        } else {
            // price = sqrt(amountToken / amountETH) * 2^48 * 2^48 = sqrt(amountToken * 2^96 / amountETH) * 2^48
            priceX96 = uint160(_sqrt((amountToken << 96) / amountETH)) << 48;
        }
    }

    function _ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        return (a - 1) / b + 1;
    }

    

    // FROM https://github.com/abdk-consulting/abdk-libraries-solidity/blob/16d7e1dd8628dfa2f88d5dadab731df7ada70bdd/ABDKMath64x64.sol#L687
    function _sqrt(uint256 _x) private pure returns (uint128) {
        if (_x == 0) {
            return 0;
        } else {
            uint256 xx = _x;
            uint256 r = 1;
            if (xx >= 0x100000000000000000000000000000000) {
                xx >>= 128;
                r <<= 64;
            }
            if (xx >= 0x10000000000000000) {
                xx >>= 64;
                r <<= 32;
            }
            if (xx >= 0x100000000) {
                xx >>= 32;
                r <<= 16;
            }
            if (xx >= 0x10000) {
                xx >>= 16;
                r <<= 8;
            }
            if (xx >= 0x100) {
                xx >>= 8;
                r <<= 4;
            }
            if (xx >= 0x10) {
                xx >>= 4;
                r <<= 2;
            }
            if (xx >= 0x8) r <<= 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1; // Seven iterations should be enough
            uint256 r1 = _x / r;
            return uint128(r < r1 ? r : r1);
        }
    }

    receive() external payable {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

interface INonfungiblePositionManager {
    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    struct MintParams {
        address token0;
        address token1;
        uint24 fee;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
    }

    function factory() external view returns (address);
    function WETH9() external view returns (address);

    function createAndInitializePoolIfNecessary(address token0, address token1, uint24 fee, uint160 sqrtPriceX96)
        external
        payable
        returns (address pool);

    function mint(MintParams calldata params)
        external
        payable
        returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);

    /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
    /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
    /// that use ether for the input amount
    function refundETH() external payable;

    /// @notice Transfers the full amount of a token held by this contract to recipient
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
    /// @param token The contract address of the token which will be transferred to `recipient`
    /// @param amountMinimum The minimum amount of token required for a transfer
    /// @param recipient The destination address of the token
    function sweepToken(address token, uint256 amountMinimum, address recipient) external payable;

    function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

interface IUniswapV3Factory {
    event PoolCreated(address token0, address token1, uint24 fee, int24 tickSpacing, address pool);

    function getPool(address tokenA, address tokenB, uint24 fee) external view returns (address pool);
    function createPool(address tokenA, address tokenB, uint24 fee) external returns (address pool);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IMemeTokenV3 is IERC20 {
    enum CurveType {
        ConstantProductV1
    }

    struct ConstructorParams {
        string name;
        string symbol;
        address creator;
        uint256 totalSupply;
        uint256 virtualTokenReserves;
        uint256 virtualCollateralReserves;
        uint256 feeBasisPoints;
        uint256 dexFeeBasisPoints;
        uint256 migrationFeeFixed;
        uint256 poolCreationFee;
        uint256 mcLowerLimit;
        uint256 mcUpperLimit;
        uint256 tokensMigrationThreshold;
        address treasury;
        address positionManager;
        address dexTreasury;
        uint24 poolFee;
        address lpFeeReceiver; // receiver of collected Uniswap V3 LP fees
    }

    error NotEnoughETHReserves();
    error InsufficientTokenReserves();
    error FailedToSendETH();
    error NotEnoughETHToBuyTokens();
    error SlippageCheckFailed();
    error MarketcapThresholdReached();
    error SendingToPairIsNotAllowedBeforeMigration();
    error TradingStopped();
    error OnlyFactory();
    error PoolAlreadyInitializedWithDifferentPrice();

    function buyExactIn(uint256 _amountOutMin)
        external
        payable
        returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee);

    function sellExactIn(uint256 _tokenAmount, uint256 _amountOutMin)
        external
        payable
        returns (uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee);

    function getAmountOutAndFee(uint256 _amountIn, uint256 _reserveIn, uint256 _reserveOut, bool _paymentTokenIsIn)
        external
        view
        returns (uint256 amountOut, uint256 fee);

    function migrate() external returns (uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount);

    function getCurveProgressBps() external view returns (uint256);

    function getMarketCap() external view returns (uint256);

    function getMaxMarketCap() external view returns (uint256);

    // LP fee receiver config and collection
    function lpFeeReceiver() external view returns (address);
    function setLpFeeReceiver(address _receiver) external;
    function collectLpFees(uint128 amount0Max, uint128 amount1Max)
        external
        returns (uint256 amount0, uint256 amount1);
}

File 9 of 14 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 14 of 14 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"virtualTokenReserves","type":"uint256"},{"internalType":"uint256","name":"virtualCollateralReserves","type":"uint256"},{"internalType":"uint256","name":"feeBasisPoints","type":"uint256"},{"internalType":"uint256","name":"dexFeeBasisPoints","type":"uint256"},{"internalType":"uint256","name":"migrationFeeFixed","type":"uint256"},{"internalType":"uint256","name":"poolCreationFee","type":"uint256"},{"internalType":"uint256","name":"mcLowerLimit","type":"uint256"},{"internalType":"uint256","name":"mcUpperLimit","type":"uint256"},{"internalType":"uint256","name":"tokensMigrationThreshold","type":"uint256"},{"internalType":"address","name":"treasury","type":"address"},{"internalType":"address","name":"positionManager","type":"address"},{"internalType":"address","name":"dexTreasury","type":"address"},{"internalType":"uint24","name":"poolFee","type":"uint24"},{"internalType":"address","name":"lpFeeReceiver","type":"address"}],"internalType":"struct IMemeTokenV3.ConstructorParams","name":"_params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FailedToSendETH","type":"error"},{"inputs":[],"name":"InsufficientTokenReserves","type":"error"},{"inputs":[],"name":"InvalidMarketCapTarget","type":"error"},{"inputs":[],"name":"MarketcapThresholdReached","type":"error"},{"inputs":[],"name":"NotEnoughETHReserves","type":"error"},{"inputs":[],"name":"NotEnoughETHToBuyTokens","type":"error"},{"inputs":[],"name":"OnlyFactory","type":"error"},{"inputs":[],"name":"PoolAlreadyExists","type":"error"},{"inputs":[],"name":"PoolAlreadyInitializedWithDifferentPrice","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SendingToPairIsNotAllowedBeforeMigration","type":"error"},{"inputs":[],"name":"SlippageCheckFailed","type":"error"},{"inputs":[],"name":"TradingStopped","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MULTIPLIER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH9","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountOutMin","type":"uint256"}],"name":"buyExactIn","outputs":[{"internalType":"uint256","name":"collateralToPayWithFee","type":"uint256"},{"internalType":"uint256","name":"helioFee","type":"uint256"},{"internalType":"uint256","name":"dexFee","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint128","name":"amount0Max","type":"uint128"},{"internalType":"uint128","name":"amount1Max","type":"uint128"}],"name":"collectLpFees","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curveType","outputs":[{"internalType":"enum IMemeTokenV3.CurveType","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexFeeBPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexTreasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeBPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fixedMigrationFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_reserveIn","type":"uint256"},{"internalType":"uint256","name":"_reserveOut","type":"uint256"},{"internalType":"bool","name":"_paymentTokenIsIn","type":"bool"}],"name":"getAmountOutAndFee","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurveProgressBps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMarketCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMaxMarketCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialTokenSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpFeeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mcLowerLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mcUpperLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"migrate","outputs":[{"internalType":"uint256","name":"tokensToMigrate","type":"uint256"},{"internalType":"uint256","name":"tokensToBurn","type":"uint256"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolCreationFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolFee","outputs":[{"internalType":"uint24","name":"","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"positionManager","outputs":[{"internalType":"contract INonfungiblePositionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"positionTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenAmount","type":"uint256"},{"internalType":"uint256","name":"_amountCollateralMin","type":"uint256"}],"name":"sellExactIn","outputs":[{"internalType":"uint256","name":"collateralToReceiveMinusFee","type":"uint256"},{"internalType":"uint256","name":"helioFee","type":"uint256"},{"internalType":"uint256","name":"dexFee","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"sendingToPairNotAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"setLpFeeReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensMigrationThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradingStopped","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virtualCollateralReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virtualCollateralReservesInitial","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virtualTokenReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

61026080604052346106be57612a25803803809161001d8285610a00565b83398101906020818303126106be578051906001600160401b0382116106be5701610240818303126106be576040519161024083016001600160401b038111848210176109035760405281516001600160401b0381116106be5781610083918401610a23565b83526020820151906001600160401b0382116106be576100a4918301610a23565b918260208201526100b760408301610a78565b9060408101918252606083015190606081019182526080840151936080820194855260a081015160a0830190815260c082015160c0840190815260e08301519760e08501988952610100840151610100860190815261012085015161012087019081526101408601519161014088019283526101608701519361016089019485526101808801519c6101808a019d8e526101546101a08a01610a78565b906101a08b0191825261016a6101c08b01610a78565b976101c08c019889526101806101e08c01610a78565b936101e08d019485526102008c01519b62ffffff8d168d036106be576102206101b1918f610200019e8f5201610a78565b6102208e019081529c518051906001600160401b0382116109035760035490600182811c921680156109f6575b60208310146108e55781601f849311610988575b50602090601f8311600114610922575f92610917575b50508160011b915f199060031b1c1916176003555b8051906001600160401b0382116109035760045490600182811c921680156108f9575b60208310146108e55781601f849311610877575b50602090601f8311600114610811575f92610806575b50508160011b915f199060031b1c1916176004555b6001600555600b805460ff60a81b1916600160a81b1790558c519930156107f35760049d8b6102b260209d600254610aaa565b600255305f525f8d5260405f208181540190556040519081525f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8e3093a35160065551600881905560808190529e5160078190559d516001600160a01b0390811661018052905160a052905160c052905181166101a052905181166101c052905161014052905161016052905160e052905161010052885161012052815181166102005290516040516312a9293f60e21b815295869290918391165afa9283156106ca575f936107b3575b506102208390525162ffffff1661024052336101e05251600b80546001600160a01b0319166001600160a01b039283161790551690308211156107ac573091935b5192831580156107a2575b61077f578382039382851161078e57821461077f576103ed84916103f293610ab7565b610a8c565b6001600160a01b039091169130830361075857600160301b600160a01b0391610426916104219160601b610a8c565b610aff565b60301b16915b6102005160405163c45a015560e01b815290602090829060049082906001600160a01b03165afa9081156106ca575f9161071e575b50602062ffffff610240511692606460405180948193630b4c774160e11b835288600484015260018060a01b031696876024840152604483015260018060a01b03165afa9081156106ca575f916106e4575b506001600160a01b03166106d55760846020925f60018060a01b03610200511662ffffff61024051169660405197889687956309f56ab160e11b875260048701526024860152604485015260018060a01b031660648401525af19081156106ca575f9161068c575b50600980546001600160a01b0319166001600160a01b0392909216919091179055604051611dc49081610c6182396080518181816105ce01526109b2015260a05181818161160d01528181611a910152611b0a015260c0518181816108ec01528181610ef40152611ac2015260e051818181610f6501526110de01526101005181818161110d01526111c801526101205181818161022a01526113cb01526101405181818161051301526108be01526101605181818161059301526109430152610180518161193601526101a05181818161034d0152818161091e01528181610f9d015261103d01526101c0518181816103770152818161097c01528181610e3a015261106701526101e0518181816102ca0152818161054c0152818161081701528181610fdd01528181611282015261145e01526102005181818161086401528181610eae01526115330152610220518181816109da0152611200015261024051818181610a5d01526117f00152f35b90506020813d6020116106c2575b816106a760209383610a00565b810103126106be576106b890610a78565b5f61051b565b5f80fd5b3d915061069a565b6040513d5f823e3d90fd5b630188c99160e11b5f5260045ffd5b90506020813d602011610716575b816106ff60209383610a00565b810103126106be5761071090610a78565b5f6104b3565b3d91506106f2565b90506020813d602011610750575b8161073960209383610a00565b810103126106be5761074a90610a78565b5f610461565b3d915061072c565b600160301b600160a01b039161077591610421919060601b610a8c565b60301b169161042c565b635c571f3760e11b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b50818410156103ca565b30936103bf565b9092506020813d6020116107eb575b816107cf60209383610a00565b810103126106be576107e462ffffff91610a78565b929061037e565b3d91506107c2565b63ec442f0560e01b5f525f60045260245ffd5b015190505f8061026a565b60045f9081528281209350601f198516905b81811061085f5750908460019594939210610847575b505050811b0160045561027f565b01515f1960f88460031b161c191690555f8080610839565b92936020600181928786015181550195019301610823565b60045f529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c810191602085106108db575b90601f859493920160051c01905b8181106108cd5750610254565b5f81558493506001016108c0565b90915081906108b2565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610240565b634e487b7160e01b5f52604160045260245ffd5b015190505f80610208565b60035f9081528281209350601f198516905b8181106109705750908460019594939210610958575b505050811b0160035561021d565b01515f1960f88460031b161c191690555f808061094a565b92936020600181928786015181550195019301610934565b60035f529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c810191602085106109ec575b90601f859493920160051c01905b8181106109de57506101f2565b5f81558493506001016109d1565b90915081906109c3565b91607f16916101de565b601f909101601f19168101906001600160401b0382119082101761090357604052565b81601f820112156106be578051906001600160401b0382116109035760405192610a57601f8401601f191660200185610a00565b828452602083830101116106be57815f9260208093018386015e8301015290565b51906001600160a01b03821682036106be57565b8115610a96570490565b634e487b7160e01b5f52601260045260245ffd5b9190820180921161078e57565b5f91905f198282099282820293848082109103818114610af7570360011115610ae557509060019109900390565b634e487b71905260116020526024601cfd5b505050505090565b80610b0957505f90565b600181600160801b811015610c49575b610bce610bc1610bb4610ba7610b9a610b8d610be59760088868010000000000000000610bdb9a1015610c3c575b640100000000811015610c2f575b62010000811015610c23575b610100811015610c17575b6010811015610c0a575b1015610c02575b610b87818b610a8c565b90610aaa565b60011c610b87818a610a8c565b60011c610b878189610a8c565b60011c610b878188610a8c565b60011c610b878187610a8c565b60011c610b878186610a8c565b60011c610b878185610a8c565b60011c8092610a8c565b80821015610bfb57505b6001600160801b031690565b9050610bef565b60011b610b7d565b60041c9160021b91610b76565b811c9160041b91610b6c565b60101c91811b91610b61565b60201c9160101b91610b55565b60401c9160201b91610b47565b50680100000000000000009050608082901c610b1956fe608080604052600436101561001c575b50361561001a575f80fd5b005b5f905f3560e01c90816302d05d3f1461192457508063059f8b161461190857806306fdde0314611814578063089fe6aa146117d5578063095ea7b31461172d57806309d2d0bc14611705578063152044811461166a5780631655bc621461164d57806318160ddd146116305780631a1c6e53146115f65780631f4db4e1146114235780632368da321461138857806323b872dd146113155780632a2befd914611267578063313ce5671461124c57806342966c681461122f5780634aa4a4fc146111eb5780634c7766b5146111b15780634fb3fbe714610fcc57806361d027b314610f885780636d04eb9f14610f4e57806370a0823114610f1757806371ea0d8e14610edd578063791b98bc14610e9957806379cc679014610e6957806385f377ca14610e255780638fd3ab801461080457806390825c281461078d57806395d89b4114610688578063a8aa1b311461065f578063a9059cbb146105f1578063b026a121146105b6578063be74615f1461057b578063c45a015514610536578063c48afe16146104fb578063c6d8b778146104d5578063ceefe5d1146104b7578063d3728de41461049b578063dd62ed3e14610448578063e8e70c4c1461042a578063e98d5cd5146102b7578063eb13a7d214610299578063ed4c639d14610276578063fd62bcd7146102505763fe94c2690361000f573461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b80fd5b503461024d578060031936011261024d57602060ff600b5460a01c166040519015158152f35b503461024d578060031936011261024d576020610291611a47565b604051908152f35b503461024d578060031936011261024d576020600654604051908152f35b50604036600319011261024d57600435907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316330361041b5760ff600b5460a01c1661040c57610326610314600854846119dd565b610320846007546119f0565b906119fd565b9161033083611a88565b919093610346836103418784611a1b565b611a1b565b93610371867f0000000000000000000000000000000000000000000000000000000000000000611be6565b61039b847f0000000000000000000000000000000000000000000000000000000000000000611be6565b60243585106103fd5750816103c86103dc926103bd6103f996956007546119f0565b600755600854611a1b565b6008556103d58533611be6565b3033611c41565b604051938493846040919493926060820195825260208201520152565b0390f35b630a1c173f60e41b8152600490fd5b63058aab2d60e21b8152600490fd5b630636a15760e11b8152600490fd5b503461024d578060031936011261024d576020600854604051908152f35b503461024d57604036600319011261024d57604061046461198f565b9161046d6119a5565b9260018060a01b031681526001602052209060018060a01b03165f52602052602060405f2054604051908152f35b503461024d578060031936011261024d57602090604051908152f35b503461024d578060031936011261024d576020600a54604051908152f35b503461024d578060031936011261024d57602060ff600b5460a81c166040519015158152f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d578060031936011261024d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d57604036600319011261024d5761060b61198f565b6009549091906001600160a01b0380841691161480610650575b610641576106366024358333611c41565b602060405160018152f35b633b95747f60e21b8152600490fd5b5060ff600b5460a81c16610625565b503461024d578060031936011261024d576009546040516001600160a01b039091168152602090f35b503461024d578060031936011261024d576040519080600454908160011c91600181168015610783575b60208410811461076f5783865290811561074857506001146106eb575b6103f9846106df818603826119bb565b60405191829182611965565b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b80821061072e575090915081016020016106df826106cf565b919260018160209254838588010152019101909291610715565b60ff191660208087019190915292151560051b850190920192506106df91508390506106cf565b634e487b7160e01b83526022600452602483fd5b92607f16926106b2565b503461024d578060031936011261024d5760085490670de0b6b3a7640000820291808304670de0b6b3a764000014901517156107f0576020670de0b6b3a76400006107e76107de85600254906119dd565b600754906119fd565b04604051908152f35b634e487b7160e01b81526011600452602490fd5b5034610ce9575f366003190112610ce9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e1657600b805460ff60a81b19169055600c5460405163095ea7b360e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166004820181905260248201839052906020816044815f305af18015610cde57610ddf575b506108bb8280611a1b565b927f0000000000000000000000000000000000000000000000000000000000000000916109d76109196127106109117f0000000000000000000000000000000000000000000000000000000000000000876119dd565b048095611a1b565b6103417f0000000000000000000000000000000000000000000000000000000000000000956103417f00000000000000000000000000000000000000000000000000000000000000009361097661097086836119f0565b8a611be6565b6109a0837f0000000000000000000000000000000000000000000000000000000000000000611be6565b6109aa8b30611b4f565b6103416008547f000000000000000000000000000000000000000000000000000000000000000090611a1b565b927f00000000000000000000000000000000000000000000000000000000000000006001600160a01b038116301015610dd857305b60405163c45a015560e01b815290602082600481885afa918215610cde575f92610db7575b50604051630b4c774160e11b81526001600160a01b0391821660048201819052938216602482018190527f000000000000000000000000000000000000000000000000000000000000000062ffffff166044830181905293909260209183916064918391165afa908115610cde575f91610d88575b506001600160a01b031680610d6a575b50308314918215610d635788925b15610d5c5787925b600a420193844211610d485760405195610160870187811067ffffffffffffffff821117610d3457604052865260208601938452604086019283526060860191620d89b319835260808701620d89b4815260a0880191825260c0880192835260e08801935f855262ffffff6101008a01965f88526101208b0198308a526101408c019a8b526040519b634418b22b60e11b8d5260018060a01b0390511660048d015260018060a01b0390511660248c0152511660448a01525160020b60648901525160020b60848801525160a48701525160c48601525160e48501525161010484015260018060a01b03905116610124830152516101448201526080816101648188875af1908115610cde575f91610ced575b50600a55813b15610ce957604051630910874560e11b81525f8160048183875af18015610cde57610cc9575b5047610cb8575b50803b15610cb45781809160646040518094819363df2ab5bb60e01b83523060048401528160248401523060448401525af18015610ca957610c94575b509060406103f99230815280602052205480610c84575b50604051938493846040919493926060820195825260208201520152565b610c8e9030611b4f565b5f610c66565b610c9f8280926119bb565b61024d575f610c4f565b6040513d84823e3d90fd5b5080fd5b610cc3904790611be6565b5f610c12565b610cd69193505f906119bb565b5f915f610c0b565b6040513d5f823e3d90fd5b5f80fd5b90506080813d608011610d2c575b81610d08608093836119bb565b81010312610ce957602081519101516001600160801b03811603610ce9575f610bdf565b3d9150610cfb565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b8892610acc565b8792610ac4565b6bffffffffffffffffffffffff60a01b60095416176009555f610ab6565b610daa915060203d602011610db0575b610da281836119bb565b810190611a28565b5f610aa6565b503d610d98565b610dd191925060203d602011610db057610da281836119bb565b905f610a31565b3090610a0c565b6020813d602011610e0e575b81610df8602093836119bb565b81010312610ce9575180151581146108b0575f80fd5b3d9150610deb565b630636a15760e11b5f5260045ffd5b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610ce9576040366003190112610ce95761001a610e8561198f565b60243590610e94823383611ceb565b611b4f565b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9576020366003190112610ce9576001600160a01b03610f3861198f565b165f525f602052602060405f2054604051908152f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b6020366003190112610ce9576004357f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e165760ff600b5460a01c166111a257305f525f6020528060405f205411156111935761103434611af2565b926110618293927f0000000000000000000000000000000000000000000000000000000000000000611be6565b61108b847f0000000000000000000000000000000000000000000000000000000000000000611be6565b60075461109881846119dd565b926110aa6008549461032083876119f0565b928310611184576110d4936110c2846110ca94611a1b565b6007556119f0565b6008553330611c41565b6110dc611a47565b7f00000000000000000000000000000000000000000000000000000000000000001061115a575b61110b611a47565b7f00000000000000000000000000000000000000000000000000000000000000001061114b57604080513481526020810192909252810191909152606090f35b6353dfa97560e01b5f5260045ffd5b600b805460ff60a01b1916600160a01b179055305f90815260208190526040902054600c55611103565b630a1c173f60e41b5f5260045ffd5b63904db1ff60e01b5f5260045ffd5b63058aab2d60e21b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610ce9576020366003190112610ce95761001a60043533611b4f565b34610ce9575f366003190112610ce957602060405160128152f35b34610ce9576020366003190112610ce95761128061198f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e16576001600160a01b031680156112db576bffffffffffffffffffffffff60a01b600b541617600b555f80f35b60405162461bcd60e51b81526020600482015260126024820152716c704665655265636569766572207a65726f60701b6044820152606490fd5b34610ce9576060366003190112610ce95761132e61198f565b6113366119a5565b60095460443591906001600160a01b0380831691161480611379575b61136a5761063692611365833383611ceb565b611c41565b633b95747f60e21b5f5260045ffd5b5060ff600b5460a81c16611352565b34610ce9575f366003190112610ce9576113b0600654305f525f60205260405f205490611a1b565b6127108102908082046127101490151715610d48576113f0907f0000000000000000000000000000000000000000000000000000000000000000906119fd565b6064811015611406575060206064604051908152f35b61271081111561141b57506020612710610291565b602090610291565b34610ce9576040366003190112610ce9576004356001600160801b038116809103610ce9576024356001600160801b038116809103610ce9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e16576002600554146115e7576002600555600a549081156115b357600b546040519360808501916001600160a01b031667ffffffffffffffff831186841017610d34576001600160801b0394859360405286526020860190815260408601918252606086019384526040519563fc6f786560e01b875251600487015260018060a01b03905116602486015251166044840152511660648201526040816084815f60018060a01b037f0000000000000000000000000000000000000000000000000000000000000000165af18015610cde575f905f90611579575b60409250600160055582519182526020820152f35b50506040813d6040116115ab575b81611594604093836119bb565b81010312610ce95780602060409251910151611564565b3d9150611587565b60405162461bcd60e51b815260206004820152600c60248201526b1b9bdd081b5a59dc985d195960a21b6044820152606490fd5b633ee5aeb560e01b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9575f366003190112610ce9576020600254604051908152f35b34610ce9575f366003190112610ce9576020600754604051908152f35b34610ce9576080366003190112610ce9576064356044356024356004358315158403610ce957604093156116d257906103206116b76116be6116ae6116c495611af2565b909391936119f0565b95826119dd565b926119f0565b905b82519182526020820152f35b806116be6116e394610320936119dd565b6116ff6116f86116f283611a88565b906119f0565b8092611a1b565b906116c6565b34610ce9575f366003190112610ce957600b546040516001600160a01b039091168152602090f35b34610ce9576040366003190112610ce95761174661198f565b6024359033156117c2576001600160a01b03169081156117af57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b34610ce9575f366003190112610ce957602060405162ffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610ce9575f366003190112610ce9576040515f6003548060011c906001811680156118fe575b6020831081146118ea578285529081156118c65750600114611868575b6103f9836106df818503826119bb565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b8082106118ac575090915081016020016106df611858565b919260018160209254838588010152019101909291611894565b60ff191660208086019190915291151560051b840190910191506106df9050611858565b634e487b7160e01b5f52602260045260245ffd5b91607f169161183b565b34610ce9575f366003190112610ce95760206040516127108152f35b34610ce9575f366003190112610ce9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b0382168203610ce957565b602435906001600160a01b0382168203610ce957565b90601f8019910116810190811067ffffffffffffffff821117610d3457604052565b81810292918115918404141715610d4857565b91908201809211610d4857565b8115611a07570490565b634e487b7160e01b5f52601260045260245ffd5b91908203918211610d4857565b90816020910312610ce957516001600160a01b0381168103610ce95790565b600854670de0b6b3a7640000810290808204670de0b6b3a76400001490151715610d4857611a846107de670de0b6b3a764000092600654906119dd565b0490565b611ab6612710917f0000000000000000000000000000000000000000000000000000000000000000906119dd565b04611aef612710611ae77f0000000000000000000000000000000000000000000000000000000000000000846119dd565b048092611a1b565b91565b906127108202918083046127101490151715610d48577f00000000000000000000000000000000000000000000000000000000000000009182612710018061271011610d4857611b48611ab691612710936119fd565b93846119dd565b9091906001600160a01b03168015611bd357805f525f60205260405f2054838110611bb9576020845f94957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef938587528684520360408620558060025403600255604051908152a3565b915063391434e360e21b5f5260045260245260445260645ffd5b634b637e8f60e11b5f525f60045260245ffd5b5f80809381935af13d15611c3c573d67ffffffffffffffff8111610d345760405190611c1c601f8201601f1916602001836119bb565b81525f60203d92013e5b15611c2d57565b6338822c1360e11b5f5260045ffd5b611c26565b6001600160a01b0316908115611bd3576001600160a01b0316918215611cd857815f525f60205260405f2054818110611cbf57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b6001600160a01b039081165f818152600160209081526040808320948616835293905291909120549291905f198410611d25575b50505050565b828410611d6b5780156117c2576001600160a01b038216156117af575f52600160205260405f209060018060a01b03165f5260205260405f20910390555f808080611d1f565b508290637dc7a0d960e11b5f5260018060a01b031660045260245260445260645ffdfea26469706673582212206cfa62cf90b4b2aeae4932196831ad4bd2e526f89ce1829304325e2ad92fcfaa64736f6c634300081e003300000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000240000000000000000000000000000000000000000000000000000000000000028000000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000033b2e3c9fd0803ce8000000000000000000000000000000000000000000000000000000002386f26fc100000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004e9f571736b8065000000000000000000000000000000000000000000000000058d15e176280000000000000000000000000000000000000000000002b02b93faf277769ff203320000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000002659c6085d26144117d904c46b48b6d180393d270000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000000000000000000000000000000000000000000bb80000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544000000000000000000000000000000000000000000000000000000000000000954657374204d656d6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003544d450000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608080604052600436101561001c575b50361561001a575f80fd5b005b5f905f3560e01c90816302d05d3f1461192457508063059f8b161461190857806306fdde0314611814578063089fe6aa146117d5578063095ea7b31461172d57806309d2d0bc14611705578063152044811461166a5780631655bc621461164d57806318160ddd146116305780631a1c6e53146115f65780631f4db4e1146114235780632368da321461138857806323b872dd146113155780632a2befd914611267578063313ce5671461124c57806342966c681461122f5780634aa4a4fc146111eb5780634c7766b5146111b15780634fb3fbe714610fcc57806361d027b314610f885780636d04eb9f14610f4e57806370a0823114610f1757806371ea0d8e14610edd578063791b98bc14610e9957806379cc679014610e6957806385f377ca14610e255780638fd3ab801461080457806390825c281461078d57806395d89b4114610688578063a8aa1b311461065f578063a9059cbb146105f1578063b026a121146105b6578063be74615f1461057b578063c45a015514610536578063c48afe16146104fb578063c6d8b778146104d5578063ceefe5d1146104b7578063d3728de41461049b578063dd62ed3e14610448578063e8e70c4c1461042a578063e98d5cd5146102b7578063eb13a7d214610299578063ed4c639d14610276578063fd62bcd7146102505763fe94c2690361000f573461024d578060031936011261024d5760206040517f000000000000000000000000000000000000000002b02b93faf277769ff203328152f35b80fd5b503461024d578060031936011261024d57602060ff600b5460a01c166040519015158152f35b503461024d578060031936011261024d576020610291611a47565b604051908152f35b503461024d578060031936011261024d576020600654604051908152f35b50604036600319011261024d57600435907f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b0316330361041b5760ff600b5460a01c1661040c57610326610314600854846119dd565b610320846007546119f0565b906119fd565b9161033083611a88565b919093610346836103418784611a1b565b611a1b565b93610371867f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b61039b847f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b60243585106103fd5750816103c86103dc926103bd6103f996956007546119f0565b600755600854611a1b565b6008556103d58533611be6565b3033611c41565b604051938493846040919493926060820195825260208201520152565b0390f35b630a1c173f60e41b8152600490fd5b63058aab2d60e21b8152600490fd5b630636a15760e11b8152600490fd5b503461024d578060031936011261024d576020600854604051908152f35b503461024d57604036600319011261024d57604061046461198f565b9161046d6119a5565b9260018060a01b031681526001602052209060018060a01b03165f52602052602060405f2054604051908152f35b503461024d578060031936011261024d57602090604051908152f35b503461024d578060031936011261024d576020600a54604051908152f35b503461024d578060031936011261024d57602060ff600b5460a81c166040519015158152f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000038d7ea4c680008152f35b503461024d578060031936011261024d576040517f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03168152602090f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d578060031936011261024d5760206040517f000000000000000000000000000000000000000000000000002386f26fc100008152f35b503461024d57604036600319011261024d5761060b61198f565b6009549091906001600160a01b0380841691161480610650575b610641576106366024358333611c41565b602060405160018152f35b633b95747f60e21b8152600490fd5b5060ff600b5460a81c16610625565b503461024d578060031936011261024d576009546040516001600160a01b039091168152602090f35b503461024d578060031936011261024d576040519080600454908160011c91600181168015610783575b60208410811461076f5783865290811561074857506001146106eb575b6103f9846106df818603826119bb565b60405191829182611965565b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b80821061072e575090915081016020016106df826106cf565b919260018160209254838588010152019101909291610715565b60ff191660208087019190915292151560051b850190920192506106df91508390506106cf565b634e487b7160e01b83526022600452602483fd5b92607f16926106b2565b503461024d578060031936011261024d5760085490670de0b6b3a7640000820291808304670de0b6b3a764000014901517156107f0576020670de0b6b3a76400006107e76107de85600254906119dd565b600754906119fd565b04604051908152f35b634e487b7160e01b81526011600452602490fd5b5034610ce9575f366003190112610ce9577f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e1657600b805460ff60a81b19169055600c5460405163095ea7b360e01b81527f0000000000000000000000002659c6085d26144117d904c46b48b6d180393d276001600160a01b03166004820181905260248201839052906020816044815f305af18015610cde57610ddf575b506108bb8280611a1b565b927f00000000000000000000000000000000000000000000000000038d7ea4c68000916109d76109196127106109117f0000000000000000000000000000000000000000000000000000000000000000876119dd565b048095611a1b565b6103417f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544956103417f00000000000000000000000000000000000000000000000000000000000000009361097661097086836119f0565b8a611be6565b6109a0837f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b6109aa8b30611b4f565b6103416008547f000000000000000000000000000000000000000000000000002386f26fc1000090611a1b565b927f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626001600160a01b038116301015610dd857305b60405163c45a015560e01b815290602082600481885afa918215610cde575f92610db7575b50604051630b4c774160e11b81526001600160a01b0391821660048201819052938216602482018190527f0000000000000000000000000000000000000000000000000000000000000bb862ffffff166044830181905293909260209183916064918391165afa908115610cde575f91610d88575b506001600160a01b031680610d6a575b50308314918215610d635788925b15610d5c5787925b600a420193844211610d485760405195610160870187811067ffffffffffffffff821117610d3457604052865260208601938452604086019283526060860191620d89b319835260808701620d89b4815260a0880191825260c0880192835260e08801935f855262ffffff6101008a01965f88526101208b0198308a526101408c019a8b526040519b634418b22b60e11b8d5260018060a01b0390511660048d015260018060a01b0390511660248c0152511660448a01525160020b60648901525160020b60848801525160a48701525160c48601525160e48501525161010484015260018060a01b03905116610124830152516101448201526080816101648188875af1908115610cde575f91610ced575b50600a55813b15610ce957604051630910874560e11b81525f8160048183875af18015610cde57610cc9575b5047610cb8575b50803b15610cb45781809160646040518094819363df2ab5bb60e01b83523060048401528160248401523060448401525af18015610ca957610c94575b509060406103f99230815280602052205480610c84575b50604051938493846040919493926060820195825260208201520152565b610c8e9030611b4f565b5f610c66565b610c9f8280926119bb565b61024d575f610c4f565b6040513d84823e3d90fd5b5080fd5b610cc3904790611be6565b5f610c12565b610cd69193505f906119bb565b5f915f610c0b565b6040513d5f823e3d90fd5b5f80fd5b90506080813d608011610d2c575b81610d08608093836119bb565b81010312610ce957602081519101516001600160801b03811603610ce9575f610bdf565b3d9150610cfb565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b8892610acc565b8792610ac4565b6bffffffffffffffffffffffff60a01b60095416176009555f610ab6565b610daa915060203d602011610db0575b610da281836119bb565b810190611a28565b5f610aa6565b503d610d98565b610dd191925060203d602011610db057610da281836119bb565b905f610a31565b3090610a0c565b6020813d602011610e0e575b81610df8602093836119bb565b81010312610ce9575180151581146108b0575f80fd5b3d9150610deb565b630636a15760e11b5f5260045ffd5b34610ce9575f366003190112610ce9576040517f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315446001600160a01b03168152602090f35b34610ce9576040366003190112610ce95761001a610e8561198f565b60243590610e94823383611ceb565b611b4f565b34610ce9575f366003190112610ce9576040517f0000000000000000000000002659c6085d26144117d904c46b48b6d180393d276001600160a01b03168152602090f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9576020366003190112610ce9576001600160a01b03610f3861198f565b165f525f602052602060405f2054604051908152f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000004e9f571736b80658152f35b34610ce9575f366003190112610ce9576040517f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315446001600160a01b03168152602090f35b6020366003190112610ce9576004357f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e165760ff600b5460a01c166111a257305f525f6020528060405f205411156111935761103434611af2565b926110618293927f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b61108b847f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b60075461109881846119dd565b926110aa6008549461032083876119f0565b928310611184576110d4936110c2846110ca94611a1b565b6007556119f0565b6008553330611c41565b6110dc611a47565b7f00000000000000000000000000000000000000000000000004e9f571736b80651061115a575b61110b611a47565b7f000000000000000000000000000000000000000000000000058d15e1762800001061114b57604080513481526020810192909252810191909152606090f35b6353dfa97560e01b5f5260045ffd5b600b805460ff60a01b1916600160a01b179055305f90815260208190526040902054600c55611103565b630a1c173f60e41b5f5260045ffd5b63904db1ff60e01b5f5260045ffd5b63058aab2d60e21b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f000000000000000000000000000000000000000000000000058d15e1762800008152f35b34610ce9575f366003190112610ce9576040517f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626001600160a01b03168152602090f35b34610ce9576020366003190112610ce95761001a60043533611b4f565b34610ce9575f366003190112610ce957602060405160128152f35b34610ce9576020366003190112610ce95761128061198f565b7f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e16576001600160a01b031680156112db576bffffffffffffffffffffffff60a01b600b541617600b555f80f35b60405162461bcd60e51b81526020600482015260126024820152716c704665655265636569766572207a65726f60701b6044820152606490fd5b34610ce9576060366003190112610ce95761132e61198f565b6113366119a5565b60095460443591906001600160a01b0380831691161480611379575b61136a5761063692611365833383611ceb565b611c41565b633b95747f60e21b5f5260045ffd5b5060ff600b5460a81c16611352565b34610ce9575f366003190112610ce9576113b0600654305f525f60205260405f205490611a1b565b6127108102908082046127101490151715610d48576113f0907f000000000000000000000000000000000000000002b02b93faf277769ff20332906119fd565b6064811015611406575060206064604051908152f35b61271081111561141b57506020612710610291565b602090610291565b34610ce9576040366003190112610ce9576004356001600160801b038116809103610ce9576024356001600160801b038116809103610ce9577f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e16576002600554146115e7576002600555600a549081156115b357600b546040519360808501916001600160a01b031667ffffffffffffffff831186841017610d34576001600160801b0394859360405286526020860190815260408601918252606086019384526040519563fc6f786560e01b875251600487015260018060a01b03905116602486015251166044840152511660648201526040816084815f60018060a01b037f0000000000000000000000002659c6085d26144117d904c46b48b6d180393d27165af18015610cde575f905f90611579575b60409250600160055582519182526020820152f35b50506040813d6040116115ab575b81611594604093836119bb565b81010312610ce95780602060409251910151611564565b3d9150611587565b60405162461bcd60e51b815260206004820152600c60248201526b1b9bdd081b5a59dc985d195960a21b6044820152606490fd5b633ee5aeb560e01b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000648152f35b34610ce9575f366003190112610ce9576020600254604051908152f35b34610ce9575f366003190112610ce9576020600754604051908152f35b34610ce9576080366003190112610ce9576064356044356024356004358315158403610ce957604093156116d257906103206116b76116be6116ae6116c495611af2565b909391936119f0565b95826119dd565b926119f0565b905b82519182526020820152f35b806116be6116e394610320936119dd565b6116ff6116f86116f283611a88565b906119f0565b8092611a1b565b906116c6565b34610ce9575f366003190112610ce957600b546040516001600160a01b039091168152602090f35b34610ce9576040366003190112610ce95761174661198f565b6024359033156117c2576001600160a01b03169081156117af57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b34610ce9575f366003190112610ce957602060405162ffffff7f0000000000000000000000000000000000000000000000000000000000000bb8168152f35b34610ce9575f366003190112610ce9576040515f6003548060011c906001811680156118fe575b6020831081146118ea578285529081156118c65750600114611868575b6103f9836106df818503826119bb565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b8082106118ac575090915081016020016106df611858565b919260018160209254838588010152019101909291611894565b60ff191660208086019190915291151560051b840190910191506106df9050611858565b634e487b7160e01b5f52602260045260245ffd5b91607f169161183b565b34610ce9575f366003190112610ce95760206040516127108152f35b34610ce9575f366003190112610ce9577f00000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a6001600160a01b03168152602090f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b0382168203610ce957565b602435906001600160a01b0382168203610ce957565b90601f8019910116810190811067ffffffffffffffff821117610d3457604052565b81810292918115918404141715610d4857565b91908201809211610d4857565b8115611a07570490565b634e487b7160e01b5f52601260045260245ffd5b91908203918211610d4857565b90816020910312610ce957516001600160a01b0381168103610ce95790565b600854670de0b6b3a7640000810290808204670de0b6b3a76400001490151715610d4857611a846107de670de0b6b3a764000092600654906119dd565b0490565b611ab6612710917f0000000000000000000000000000000000000000000000000000000000000064906119dd565b04611aef612710611ae77f0000000000000000000000000000000000000000000000000000000000000000846119dd565b048092611a1b565b91565b906127108202918083046127101490151715610d48577f00000000000000000000000000000000000000000000000000000000000000649182612710018061271011610d4857611b48611ab691612710936119fd565b93846119dd565b9091906001600160a01b03168015611bd357805f525f60205260405f2054838110611bb9576020845f94957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef938587528684520360408620558060025403600255604051908152a3565b915063391434e360e21b5f5260045260245260445260645ffd5b634b637e8f60e11b5f525f60045260245ffd5b5f80809381935af13d15611c3c573d67ffffffffffffffff8111610d345760405190611c1c601f8201601f1916602001836119bb565b81525f60203d92013e5b15611c2d57565b6338822c1360e11b5f5260045ffd5b611c26565b6001600160a01b0316908115611bd3576001600160a01b0316918215611cd857815f525f60205260405f2054818110611cbf57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b6001600160a01b039081165f818152600160209081526040808320948616835293905291909120549291905f198410611d25575b50505050565b828410611d6b5780156117c2576001600160a01b038216156117af575f52600160205260405f209060018060a01b03165f5260205260405f20910390555f808080611d1f565b508290637dc7a0d960e11b5f5260018060a01b031660045260245260445260645ffdfea26469706673582212206cfa62cf90b4b2aeae4932196831ad4bd2e526f89ce1829304325e2ad92fcfaa64736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000240000000000000000000000000000000000000000000000000000000000000028000000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000033b2e3c9fd0803ce8000000000000000000000000000000000000000000000000000000002386f26fc100000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004e9f571736b8065000000000000000000000000000000000000000000000000058d15e176280000000000000000000000000000000000000000000002b02b93faf277769ff203320000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000002659c6085d26144117d904c46b48b6d180393d270000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000000000000000000000000000000000000000000bb80000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544000000000000000000000000000000000000000000000000000000000000000954657374204d656d6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003544d450000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _params (tuple):
Arg [1] : name (string): Test Meme
Arg [2] : symbol (string): TME
Arg [3] : creator (address): 0x95c94381522CcbC602843615c6c28b53c1c6121a
Arg [4] : totalSupply (uint256): 1000000000000000000000000000
Arg [5] : virtualTokenReserves (uint256): 1000000000000000000000000000
Arg [6] : virtualCollateralReserves (uint256): 10000000000000000
Arg [7] : feeBasisPoints (uint256): 100
Arg [8] : dexFeeBasisPoints (uint256): 0
Arg [9] : migrationFeeFixed (uint256): 1000000000000000
Arg [10] : poolCreationFee (uint256): 0
Arg [11] : mcLowerLimit (uint256): 354083913341829221
Arg [12] : mcUpperLimit (uint256): 400000000000000000
Arg [13] : tokensMigrationThreshold (uint256): 831946755407653907465372466
Arg [14] : treasury (address): 0x0d5d54760F829b0aC8DdDC3763f351963Db31544
Arg [15] : positionManager (address): 0x2659C6085D26144117D904C46B48B6d180393d27
Arg [16] : dexTreasury (address): 0x0d5d54760F829b0aC8DdDC3763f351963Db31544
Arg [17] : poolFee (uint24): 3000
Arg [18] : lpFeeReceiver (address): 0x0d5d54760F829b0aC8DdDC3763f351963Db31544


-----Encoded View---------------
23 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000240
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000280
Arg [3] : 00000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a
Arg [4] : 0000000000000000000000000000000000000000033b2e3c9fd0803ce8000000
Arg [5] : 0000000000000000000000000000000000000000033b2e3c9fd0803ce8000000
Arg [6] : 000000000000000000000000000000000000000000000000002386f26fc10000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000064
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [9] : 00000000000000000000000000000000000000000000000000038d7ea4c68000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [11] : 00000000000000000000000000000000000000000000000004e9f571736b8065
Arg [12] : 000000000000000000000000000000000000000000000000058d15e176280000
Arg [13] : 000000000000000000000000000000000000000002b02b93faf277769ff20332
Arg [14] : 0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544
Arg [15] : 0000000000000000000000002659c6085d26144117d904c46b48b6d180393d27
Arg [16] : 0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000bb8
Arg [18] : 0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544
Arg [19] : 0000000000000000000000000000000000000000000000000000000000000009
Arg [20] : 54657374204d656d650000000000000000000000000000000000000000000000
Arg [21] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [22] : 544d450000000000000000000000000000000000000000000000000000000000


Deployed Bytecode Sourcemap

672:16819:10:-:0;;;;;;;;;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1241:49;672:16819;;;;;;;;;;;;;;;;;;;;;1759:26;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;887:33;672:16819;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;;672:16819:10;;;;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;672:16819;2740:14;672:16819;;;;2736:43;;6754:82;6755:40;6770:25;672:16819;6755:40;;:::i;:::-;6800:35;672:16819;6800:20;672:16819;6800:35;:::i;:::-;6754:82;;:::i;:::-;6867:34;;;;:::i;:::-;6941:30;;;:39;:30;;;;;:::i;:::-;:39;:::i;:::-;7010:8;7020;7010;;7020;:::i;:::-;7072:6;7059:11;;7072:6;:::i;:::-;672:16819;;7094:50;;7090:84;;672:16819;;7231:48;7397:12;672:16819;7185:36;672:16819;;;6800:20;672:16819;7185:36;:::i;:::-;6800:20;672:16819;6770:25;672:16819;7231:48;:::i;:::-;6770:25;672:16819;7322:27;2840:10;;7322:27;:::i;:::-;7390:4;2840:10;7397:12;:::i;:::-;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;;7090:84;-1:-1:-1;;;7153:21:10;;672:16819;;7153:21;2736:43;-1:-1:-1;;;2763:16:10;;672:16819;;2763:16;2836:47;-1:-1:-1;;;2870:13:10;;672:16819;;2870:13;672:16819;;;;;;;;;;;;;;967:40;672:16819;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;:::i;:::-;;;;:::i;:::-;;;;;;;;;;3561:11:1;672:16819:10;;;3561:27:1;672:16819:10;;;;;;-1:-1:-1;672:16819:10;;;;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1617:30;672:16819;;;;;;;;;;;;;;;;;;;;;;1791:42;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;;1297:42;672:16819;;;;;;;;;;;;;;;;;;1579:32;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;1345:40;672:16819;;;;;;;;;;;;;;;;;;;1013:57;672:16819;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;14237:4;672:16819;;;;-1:-1:-1;;;;;672:16819:10;;;;;14231:10;;:37;;672:16819;14227:92;;3388:5:1;672:16819:10;;;735:10:5;3388:5:1;:::i;:::-;672:16819:10;;;;;;;14227:92;-1:-1:-1;;;14277:42:10;;672:16819;;14277:42;14231:37;672:16819;;14245:23;672:16819;;;;14231:37;;672:16819;;;;;;;;;;;;;1430:19;672:16819;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;:::i;:::-;;;;;;;-1:-1:-1;672:16819:10;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;;;;;;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;11615:25;672:16819;;11643:8;672:16819;;;;;;11643:8;672:16819;;;;;;;;11643:8;11614:77;11615:52;672:16819;2881:12:1;672:16819:10;11615:52;;:::i;:::-;11671:20;672:16819;11614:77;;:::i;:::-;672:16819;;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;8324:31;672:16819;;-1:-1:-1;;;;672:16819:10;;;8392:22;672:16819;;;-1:-1:-1;;;8424:55:10;;8445:15;-1:-1:-1;;;;;672:16819:10;;8424:55;;672:16819;;;;;;;;;;;;8424:55;672:16819;-1:-1:-1;8424:4:10;:55;;;;;;;;672:16819;8548:33;;;;;:::i;:::-;8642:17;;13390:9;8867:101;13437:19;2004:6;13377:22;13390:9;13377:22;;:::i;:::-;672:16819;13437:19;;;:::i;:::-;8867:83;8690:8;8714:15;8867:74;8714:15;8700:29;;;;;;:::i;:::-;;;:::i;:::-;8773:6;8760:11;;8773:6;:::i;:::-;8812:12;8424:4;;8812:12;:::i;:::-;8867:60;:25;672:16819;8895:32;8867:60;;:::i;:101::-;9066:5;;-1:-1:-1;;;;;672:16819:10;;8424:4;9050:21;672:16819;;;8424:4;9050:71;672:16819;;-1:-1:-1;;;9197:25:10;;672:16819;;;;;9197:25;;;;;;;;672:16819;9197:25;;;9050:71;-1:-1:-1;672:16819:10;;-1:-1:-1;;;9179:77:10;;-1:-1:-1;;;;;672:16819:10;;;;9179:77;;672:16819;;;;;;;;;;;;9248:7;672:16819;;8424:55;672:16819;;;;;;;;;;;;9179:77;;672:16819;;;9179:77;;;;;;;672:16819;9179:77;;;9050:71;-1:-1:-1;;;;;;672:16819:10;;9266:68;;9050:71;-1:-1:-1;8424:4:10;9369:23;;;:60;;;;;;;9464;;;;;;9999:2;9981:15;672:16819;9981:15;;;672:16819;;;;;;2240:6;672:16819;;;;;;;;;;;;;;;;9590:422;;672:16819;;;;9590:422;;2240:6;;;672:16819;9590:422;;2192:7;;;2240:6;;9590:422;;;2240:6;;;9590:422;;;672:16819;;;9590:422;;;672:16819;;;;9590:422;;672:16819;;;;;9590:422;;;672:16819;;;;9590:422;;;8424:4;;672:16819;;9590:422;;;672:16819;;;;;;;;;10046:53;;672:16819;;;;;2240:6;;672:16819;;10046:53;;672:16819;;;;;;2240:6;;672:16819;;2240:6;;672:16819;2240:6;672:16819;8424:55;2240:6;;672:16819;2240:6;672:16819;;9179:77;2240:6;;;;672:16819;;2240:6;;;;;;;;672:16819;2240:6;;;;672:16819;2240:6;;;;672:16819;2240:6;;;;672:16819;;;;;;2240:6;;672:16819;2240:6;;;672:16819;2240:6;;;;672:16819;9590:422;10046:53;;;;;;;;;;;;672:16819;10046:53;;;9464:60;672:16819;9999:2;672:16819;10191:27;;;;;672:16819;;-1:-1:-1;;;10191:27:10;;672:16819;;;;;10191:27;;;;;;;;;9464:60;10232:21;;10228:108;;9464:60;10424:59;;;;;;672:16819;;;9179:77;672:16819;;;;;;;;;10424:59;;8424:4;672:16819;10424:59;;672:16819;2240:6;672:16819;2240:6;;672:16819;8424:4;:55;2240:6;;672:16819;10424:59;;;;;;;;9464:60;8424:4;;672:16819;;8424:4;;672:16819;;;;;;;10616:25;10612:99;;9464:60;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;10612:99;10678:21;8424:4;;10678:21;:::i;:::-;10612:99;;;10424:59;;;;;;:::i;:::-;672:16819;;10424:59;;;;672:16819;;;;;;;;;10424:59;672:16819;;;10228:108;10303:21;;;;;:::i;:::-;10228:108;;;10191:27;;;;;672:16819;10191:27;;:::i;:::-;672:16819;10191:27;;;;;672:16819;;;;;;;;;10191:27;672:16819;;;10046:53;;;9590:422;10046:53;;9590:422;10046:53;;;;;;9590:422;10046:53;;;:::i;:::-;;;2240:6;;;;672:16819;;;2240:6;;;-1:-1:-1;;;;;672:16819:10;;;;;10046:53;;;;;;-1:-1:-1;10046:53:10;;672:16819;;;;;;;;;;;;;;;;;;;;;;;;9464:60;;;;;9369;;;;;9266:68;672:16819;;;9308:15;672:16819;;;9308:15;672:16819;9266:68;;;9179:77;;;;672:16819;9179:77;672:16819;9179:77;;;;;;;;:::i;:::-;;;;;:::i;:::-;;;;;;;;;9197:25;;;;;672:16819;9197:25;672:16819;9197:25;;;;;;;:::i;:::-;;;;;9050:71;8424:4;9050:71;;;8424:55;672:16819;8424:55;;672:16819;8424:55;;;;;;672:16819;8424:55;;;:::i;:::-;;;672:16819;;;;;;;;;;8424:55;672:16819;;;;8424:55;;;-1:-1:-1;8424:55:10;;2836:47;2870:13;;;672:16819;2870:13;672:16819;;2870:13;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;;;1537:36;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;1166:5:3;672:16819:10;;:::i;:::-;;;735:10:5;1135:5:3;735:10:5;;1135:5:3;;:::i;:::-;1166;:::i;672:16819:10:-;;;;;;-1:-1:-1;;672:16819:10;;;;;;2017:60;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1114:34;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;-1:-1:-1;;;;;672:16819:10;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1155:37;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;1498:33;-1:-1:-1;;;;;672:16819:10;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;672:16819;2586:14;672:16819;;;;2582:43;;5708:4;672:16819;;;;;;;;;;5690:41;;5686:81;;5913:52;5803:9;5913:52;:::i;:::-;5996:8;6006;5996;;;;6006;:::i;:::-;6058:6;6045:11;;6058:6;:::i;:::-;6137:20;672:16819;6109:48;;;;:::i;:::-;672:16819;6108:108;6162:25;672:16819;6162:53;;;;;:::i;6108:108::-;6231:25;;;6227:59;;6442:9;6297:33;;;6340:54;6297:33;;:::i;:::-;6137:20;672:16819;6340:54;:::i;:::-;6162:25;672:16819;2840:10;5708:4;6442:9;:::i;:::-;13870:17;;:::i;:::-;13907:12;-1:-1:-1;13898:215:10;;672:16819;13715:17;;:::i;:::-;13752:12;-1:-1:-1;13743:57:10;;672:16819;;;5803:9;672:16819;;;;;;;;;;;;;;;;;;13743:57;13773:27;;;672:16819;13773:27;672:16819;;13773:27;13898:215;2586:14;672:16819;;-1:-1:-1;;;;672:16819:10;-1:-1:-1;;;672:16819:10;;;5708:4;-1:-1:-1;672:16819:10;;;;;;;;;;;14053:49;672:16819;13898:215;;6227:59;6265:21;;;672:16819;6265:21;672:16819;;6265:21;5686:81;5740:27;;;672:16819;5740:27;672:16819;;5740:27;2582:43;2609:16;;;672:16819;2609:16;672:16819;;2609:16;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1198:37;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;2083:30;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;692:5:3;672:16819:10;;735:10:5;692:5:3;:::i;672:16819:10:-;;;;;;-1:-1:-1;;672:16819:10;;;;;;;2761:2:1;672:16819:10;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;-1:-1:-1;;;;;672:16819:10;10899:23;;672:16819;;;;;10955:25;672:16819;;;10955:25;672:16819;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;;;:::i;:::-;14505:4;672:16819;;;;;-1:-1:-1;;;;;672:16819:10;;;;;14499:10;;:37;;672:16819;14495:92;;4890:5:1;735:10:5;4854:5:1;735:10:5;;4854:5:1;;:::i;:::-;4890;:::i;14495:92:10:-;14545:42;;;672:16819;14545:42;672:16819;;14545:42;14499:37;672:16819;;14513:23;672:16819;;;;14499:37;;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;12033:45;:18;672:16819;12072:4;672:16819;;;;;;;;;12033:45;;:::i;:::-;2004:6;672:16819;;;;;;2004:6;672:16819;;;;;;;12031:89;12096:24;;12031:89;;:::i;:::-;12148:3;12137:14;;12148:3;;;12137:70;672:16819;12148:3;672:16819;;;;;;12137:70;2004:6;12161:21;;2004:6;;;12161:45;672:16819;2004:6;12137:70;;12161:45;672:16819;12161:45;12137:70;;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;1899:1:7;2702:7;672:16819:10;2702:18:7;2698:86;;1899:1;2702:7;672:16819:10;11187:15;672:16819;11187:20;;;672:16819;;11406:13;672:16819;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;11293:221;;672:16819;;;;11293:221;;672:16819;;;11293:221;;;672:16819;;;;;;;;;11256:268;;672:16819;;11256:268;;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;11256:268;672:16819;;;;;;;11256:15;672:16819;11256:268;;;;;;672:16819;;;11256:268;;;672:16819;;;;1857:1:7;2702:7;672:16819:10;;;;;;;;;;;11256:268;;;672:16819;11256:268;;672:16819;11256:268;;;;;;672:16819;11256:268;;;:::i;:::-;;;672:16819;;;;;;;;;;;;11256:268;;;;;-1:-1:-1;11256:268:10;;672:16819;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;2698:86:7;2743:30;;;672:16819:10;2743:30:7;672:16819:10;;2743:30:7;672:16819:10;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1077:31;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;2881:12:1;672:16819:10;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;926:35;672:16819;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;;;;;;;;;;;;;;7628:524;;;7730:39;7871:31;7789:17;7834:32;7730:39;7833:70;7730:39;;:::i;:::-;7789:17;;;;;:::i;:::-;7834:32;;;:::i;:::-;7871:31;;:::i;7833:70::-;7628:524;;672:16819;;;;;;;;;;7628:524;7947:23;;7946:52;7947:23;7975:22;7947:23;;:::i;7946:52::-;8125:16;8094:17;8050:24;;;:::i;:::-;8094:17;;:::i;:::-;8125:16;;;:::i;:::-;7628:524;;;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;1724:28;672:16819;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;;;735:10:5;;9717:19:1;9713:89;;-1:-1:-1;;;;;672:16819:10;;9815:21:1;;9811:90;;735:10:5;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;9989:31:1;672:16819:10;735:10:5;9989:31:1;;672:16819:10;;;;;;;9811:90:1;9859:31;;;672:16819:10;9859:31:1;672:16819:10;;;;;9859:31:1;9713:89;9759:32;;;672:16819:10;9759:32:1;672:16819:10;;;;;9759:32:1;672:16819:10;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;2119:31;672:16819;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1837:5:1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;1837:5:1;672:16819:10;;;;;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;;;;;;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;2004:6;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;1392:32;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;:::o;:::-;;;;-1:-1:-1;;;;;672:16819:10;;;;;;:::o;:::-;;;;-1:-1:-1;;;;;672:16819:10;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;:::o;:::-;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;:::o;11734:199::-;11815:25;672:16819;11843:8;672:16819;;;;;;11843:8;672:16819;;;;;;;11814:82;11815:57;11843:8;672:16819;11854:18;672:16819;11815:57;;:::i;11814:82::-;672:16819;11734:199;:::o;12220:250::-;12345:16;2004:6;12220:250;12355:6;12345:16;;:::i;:::-;672:16819;12442:21;2004:6;12395:23;12409:9;12395:23;;:::i;:::-;672:16819;12442:21;;;:::i;:::-;12220:250;:::o;12476:776::-;;2004:6;672:16819;;;;;;2004:6;672:16819;;;;;;;13091:6;672:16819;;2004:6;672:16819;;2004:6;672:16819;;;13048:50;13124:19;13048:50;2004:6;13048:50;;:::i;:::-;13124:19;;;:::i;7888:206:1:-;;;;-1:-1:-1;;;;;672:16819:10;7958:21:1;;7954:89;;672:16819:10;7977:1:1;672:16819:10;7977:1:1;672:16819:10;;;7977:1:1;672:16819:10;;6244:19:1;;;6240:115;;672:16819:10;;7977:1:1;672:16819:10;;6987:25:1;672:16819:10;;;;;;;;;;;;;6714:21:1;672:16819:10;;6714:21:1;672:16819:10;;;;;;6987:25:1;7888:206::o;6240:115::-;6290:50;;;;;7977:1;6290:50;;672:16819:10;;;;;;7977:1:1;6290:50;7954:89;8002:30;;;7977:1;8002:30;7977:1;8002:30;672:16819:10;;7977:1:1;8002:30;13469:173:10;13562:28;13469:173;;;;;13562:28;;672:16819;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;:::i;:::-;;;13562:28;672:16819;;;;;;13604:5;13600:35;;13469:173::o;13600:35::-;13618:17;;;13562:28;13618:17;;13562:28;13618:17;672:16819;;;5297:300:1;-1:-1:-1;;;;;672:16819:10;;5380:18:1;;5376:86;;-1:-1:-1;;;;;672:16819:10;;5475:16:1;;5471:86;;672:16819:10;5396:1:1;672:16819:10;5396:1:1;672:16819:10;;;5396:1:1;672:16819:10;;6244:19:1;;;6240:115;;672:16819:10;6987:25:1;672:16819:10;;;;5396:1:1;672:16819:10;5396:1:1;672:16819:10;;;;5396:1:1;672:16819:10;;;5396:1:1;672:16819:10;5396:1:1;672:16819:10;;;5396:1:1;672:16819:10;;;;;;;;;;;;6987:25:1;5297:300::o;6240:115::-;6290:50;;;;5396:1;6290:50;;672:16819:10;;;;;;5396:1:1;6290:50;5471:86;5514:32;;;5396:1;5514:32;5396:1;5514:32;672:16819:10;;5396:1:1;5514:32;10319:476;-1:-1:-1;;;;;672:16819:10;;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;10319:476:1;;-1:-1:-1;;10484:36:1;;10480:309;;10319:476;;;;;:::o;10480:309::-;10540:24;;;10536:130;;9717:19;;9713:89;;-1:-1:-1;;;;;672:16819:10;;9815:21:1;9811:90;;-1:-1:-1;672:16819:10;3561:11:1;672:16819:10;;;-1:-1:-1;672:16819:10;9910:27:1;672:16819:10;;;;;;-1:-1:-1;672:16819:10;;;;-1:-1:-1;672:16819:10;;;;;10480:309:1;;;;;;10536:130;10591:60;;;;;;-1:-1:-1;10591:60:1;672:16819:10;;;;;;10591:60:1;672:16819:10;;;;;;-1:-1:-1;10591:60:1

Swarm Source

ipfs://6cfa62cf90b4b2aeae4932196831ad4bd2e526f89ce1829304325e2ad92fcfaa

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0x97Fd9C66381EC72944439B8EFC9CeAdF730501Ef
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.