ETH Price: $4,012.12 (-7.57%)

Contract

0xb2a4E3B4843ADea2abdCc02aa9db8261Fd9323AD

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Nominate New Own...18509592025-05-30 8:29:30133 days ago1748593770IN
0xb2a4E3B4...1Fd9323AD
0 ETH00.00000025

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
PushOracle

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 20000 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25

pragma solidity ^0.8.25;

import {Math} from "openzeppelin-contracts/utils/math/Math.sol";
import {Owned} from "src/utils/Owned.sol";
import {ScaleUtils, Scale} from "src/lib/euler/ScaleUtils.sol";
import {BaseAdapter, Errors} from "../BaseAdapter.sol";
import {IPushOracle, Price} from "src/interfaces/IPushOracle.sol";
/**
 * @title   PushOracle
 * @author  RedVeil
 * @notice  A simple oracle that allows for setting prices for base/quote pairs by permissioned entities
 * @dev     The safety and reliability of these prices must be handled by other contracts/infrastructure
 */
contract PushOracle is BaseAdapter, Owned {
    string public constant name = "PushOracle";

    /// @dev base => quote => price
    mapping(address => mapping(address => Price)) public prices;

    event PriceUpdated(
        address base,
        address quote,
        uint256 bqPrice,
        uint256 qbPrice,
        uint256 targetBqPrice,
        uint256 targetQbPrice,
        uint256 changePerBlock
    );

    error Misconfigured();

    constructor(address _owner) Owned(_owner) {}

    /*//////////////////////////////////////////////////////////////
                        SET PRICE LOGIC
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Set the price of a base/quote pair
     * @param base The base asset
     * @param quote The quote asset
     * @param bqPrice The price of the base in terms of the quote
     * @param qbPrice The price of the quote in terms of the base
     */
    function setPrice(
        address base,
        address quote,
        uint256 bqPrice,
        uint256 qbPrice
    ) external onlyOwner {
        _setPrice(base, quote, bqPrice, qbPrice);
    }

    /**
     * @notice Set the prices of multiple base/quote pairs
     * @param bases The base assets
     * @param quotes The quote assets
     * @param bqPrices The prices of the bases in terms of the quotes
     * @param qbPrices The prices of the quotes in terms of the bases
     * @dev The lengths of the arrays must be the same
     */
    function setPrices(
        address[] memory bases,
        address[] memory quotes,
        uint256[] memory bqPrices,
        uint256[] memory qbPrices
    ) external onlyOwner checkLength(bases.length, quotes.length) {
        _checkLength(bases.length, bqPrices.length);
        _checkLength(bases.length, qbPrices.length);

        for (uint256 i = 0; i < bases.length; i++) {
            _setPrice(bases[i], quotes[i], bqPrices[i], qbPrices[i]);
        }
    }

    /// @dev Internal function to set the price of a base/quote pair
    function _setPrice(
        address base,
        address quote,
        uint256 bqPrice,
        uint256 qbPrice
    ) internal {
        // Both prices must be set
        if ((bqPrice == 0 && qbPrice != 0) || (qbPrice == 0 && bqPrice != 0))
            revert Misconfigured();

        prices[base][quote] = Price({
            price: bqPrice,
            targetPrice: bqPrice,
            changePerBlock: 0,
            lastUpdatedBlock: block.number,
            increase: false
        });
        prices[quote][base] = Price({
            price: qbPrice,
            targetPrice: qbPrice,
            changePerBlock: 0,
            lastUpdatedBlock: block.number,
            increase: false
        });

        emit PriceUpdated(base, quote, bqPrice, qbPrice, bqPrice, qbPrice, 0);
    }

    /*//////////////////////////////////////////////////////////////
                    SET PRICE OVER TIME LOGIC
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Set the price of a base/quote pair
     * @param base The base asset
     * @param quote The quote asset
     * @param bqTargetPrice The target price of the base in terms of the quote
     * @param qbTargetPrice The target price of the quote in terms of the base
     * @param changePerBlock The price increase per block
     * @param increase Whether the price is increasing or decreasing
     */
    function setPriceOverTime(
        address base,
        address quote,
        uint256 bqTargetPrice,
        uint256 qbTargetPrice,
        uint256 changePerBlock,
        bool increase
    ) external onlyOwner {
        _setPriceOverTime(
            base,
            quote,
            bqTargetPrice,
            qbTargetPrice,
            changePerBlock,
            increase
        );
    }

    /**
     * @notice Set the prices of multiple base/quote pairs
     * @param bases The base assets
     * @param quotes The quote assets
     * @param bqTargetPrices The target prices of the bases in terms of the quotes
     * @param qbTargetPrices The target prices of the quotes in terms of the bases
     * @param changesPerBlock The price increases per block
     * @param increases Whether the price is increasing or decreasing
     * @dev The lengths of the arrays must be the same
     */
    function setPricesOverTime(
        address[] memory bases,
        address[] memory quotes,
        uint256[] memory bqTargetPrices,
        uint256[] memory qbTargetPrices,
        uint256[] memory changesPerBlock,
        bool[] memory increases
    ) external onlyOwner checkLength(bases.length, quotes.length) {
        _checkLength(bases.length, bqTargetPrices.length);
        _checkLength(bases.length, qbTargetPrices.length);
        _checkLength(bases.length, changesPerBlock.length);
        _checkLength(bases.length, increases.length);

        for (uint256 i = 0; i < bases.length; i++) {
            _setPriceOverTime(
                bases[i],
                quotes[i],
                bqTargetPrices[i],
                qbTargetPrices[i],
                changesPerBlock[i],
                increases[i]
            );
        }
    }

    /// @dev Internal function to set the price of a base/quote pair
    function _setPriceOverTime(
        address base,
        address quote,
        uint256 bqTargetPrice,
        uint256 qbTargetPrice,
        uint256 changePerBlock,
        bool increase
    ) internal {
        // Both prices must be set
        if (
            (bqTargetPrice == 0 && qbTargetPrice != 0) ||
            (qbTargetPrice == 0 && bqTargetPrice != 0) ||
            (changePerBlock == 0)
        ) revert Misconfigured();

        uint256 bqPrice = _getCurrentPrice(base, quote);
        uint256 qbPrice = _getCurrentPrice(quote, base);

        if (bqPrice == 0 || qbPrice == 0) revert Misconfigured();

        if (increase) {
            if (bqPrice > bqTargetPrice) revert Misconfigured();
        } else {
            if (bqPrice < bqTargetPrice) revert Misconfigured();
        }

        prices[base][quote] = Price({
            price: bqPrice,
            targetPrice: bqTargetPrice,
            changePerBlock: changePerBlock,
            lastUpdatedBlock: block.number,
            increase: increase
        });
        prices[quote][base] = Price({
            price: qbPrice,
            targetPrice: qbTargetPrice,
            changePerBlock: changePerBlock,
            lastUpdatedBlock: block.number,
            increase: !increase
        });

        emit PriceUpdated(
            base,
            quote,
            bqPrice,
            qbPrice,
            bqTargetPrice,
            qbTargetPrice,
            changePerBlock
        );
    }

    /*//////////////////////////////////////////////////////////////
                            QUOTE LOGIC
    //////////////////////////////////////////////////////////////*/

    function getCurrentPrice(
        address base,
        address quote
    ) public view returns (uint256) {
        return _getCurrentPrice(base, quote);
    }

    function _getCurrentPrice(
        address base,
        address quote
    ) internal view returns (uint256) {
        Price memory price = prices[base][quote];

        if (price.changePerBlock == 0 || price.lastUpdatedBlock == block.number)
            return price.price;

        uint256 change = price.changePerBlock *
            (block.number - price.lastUpdatedBlock);

        uint256 newPrice = price.price + change;
        if (price.increase) {
            return newPrice > price.targetPrice ? price.targetPrice : newPrice;
        } else {
            newPrice = change > price.price ? 0 : price.price - change;
            return newPrice < price.targetPrice ? price.targetPrice : newPrice;
        }
    }

    /// @dev Internal function to get the quote amount for a given base amount
    function _getQuote(
        uint256 inAmount,
        address base,
        address quote
    ) internal view override returns (uint256) {
        uint256 price = _getCurrentPrice(base, quote);

        if (price == 0) revert Errors.PriceOracle_NotSupported(base, quote);

        uint8 baseDecimals = _getDecimals(base);
        uint8 quoteDecimals = _getDecimals(quote);
        Scale scale = ScaleUtils.calcScale(baseDecimals, quoteDecimals, 18);

        return ScaleUtils.calcOutAmount(inAmount, price, scale, false);
    }

    /*//////////////////////////////////////////////////////////////
                            UTILS
    //////////////////////////////////////////////////////////////*/

    /// @dev Modifier to check the lengths of two arrays
    modifier checkLength(uint256 lengthA, uint256 lengthB) {
        _checkLength(lengthA, lengthB);
        _;
    }

    /// @dev Internal function to check the lengths of two arrays
    function _checkLength(uint256 lengthA, uint256 lengthB) internal pure {
        if (lengthA != lengthB) revert Misconfigured();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, shl(0xe0, 0x4e487b71))
            mstore(0x04, code)
            revert(0x00, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²56 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²56. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such
            // that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 24.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 28
            inverse *= 2 - denominator * inverse; // inverse mod 2¹6
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 264
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²8
            inverse *= 2 - denominator * inverse; // inverse mod 2²56

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is
            // less than 2²56, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax = 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        /// @solidity memory-safe-assembly
        assembly {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `e_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1).
            //
            // We can refine our estimation by noticing that the the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2).
            // This is going to be our x_0 (and e_0)
            xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              = 0
            // Which proves that for all n = 1, sqrt(a) = x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // e_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | e_n² / (2 * x_n) |
            //         = e_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // e_1 = e_0² / | (2 * x_0) |
            //     = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     = 2**(2*e-4) / (3 * 2**(e-1))
            //     = 2**(e-3) / 3
            //     = 2**(e-3-log2(3))
            //     = 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n:
            // e_{n+1} = e_n² / | (2 * x_n) |
            //         = (2**(e-k))² / (2 * 2**(e-1))
            //         = 2**(2*e-2*k) / 2**e
            //         = 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144)  -- general case with k = 72

            // Because e = 128 (as discussed during the first estimation phase), we know have reached a precision
            // e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 6 of 13 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        /// @solidity memory-safe-assembly
        assembly {
            u := iszero(iszero(b))
        }
    }
}

File 7 of 13 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2p.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ˜ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ˜ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2p.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            int256 wad = int256(WAD);
            int256 p = x;
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c != uint256(0)) {
                int256 t = w | 1;
                /// @solidity memory-safe-assembly
                assembly {
                    x := sdiv(mul(x, wad), t)
                }
                x = (t * (wad + lnWad(x)));
                /// @solidity memory-safe-assembly
                assembly {
                    w := sdiv(x, add(wad, t))
                }
            }
        }
    }

    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2p.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `result` as `p0` to save gas.
            result := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    result :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(
                                mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                                div(sub(result, r), t)
                            ),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                result := div(result, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(result, lt(mm, result)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            result :=
                mul(
                    or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))

            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))

            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)

            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1)))
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(sub(exp(10, 36), 2), sub(mulmod(mul(z, z), z, x), 1))) {
                // forgefmt: disable-next-item
                z := sub(z, eq(mulmod(mul(z, z), z, sub(x, 1)),
                    add(exp(10, 36), mulmod(mul(z, z), z, x))))
            }
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(sar(255, x), add(sar(255, x), x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(mul(xor(sub(y, x), sub(x, y)), gt(x, y)), sub(y, x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// Reverts if `begin` equals `end` (due to division by zero).
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin >= end) {
            t = ~t;
            begin = ~begin;
            end = ~end;
        }
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// Reverts if `begin` equals `end` (due to division by zero).
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin >= end) {
            t = int256(~uint256(t));
            begin = int256(~uint256(begin));
            end = int256(~uint256(end));
        }
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b) - uint256(a),
                uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a) - uint256(b),
                uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
        }
    }

    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;

/// @title IPriceOracle
/// @custom:security-contact [email protected]
/// @author Euler Labs (https://www.eulerlabs.com/)
/// @notice Common PriceOracle interface.
interface IPriceOracle {
    /// @notice Get the name of the oracle.
    /// @return The name of the oracle.
    function name() external view returns (string memory);

    /// @notice One-sided price: How much quote token you would get for inAmount of base token, assuming no price spread.
    /// @param inAmount The amount of `base` to convert.
    /// @param base The token that is being priced.
    /// @param quote The token that is the unit of account.
    /// @return outAmount The amount of `quote` that is equivalent to `inAmount` of `base`.
    function getQuote(
        uint256 inAmount,
        address base,
        address quote
    ) external view returns (uint256 outAmount);

    /// @notice Two-sided price: How much quote token you would get/spend for selling/buying inAmount of base token.
    /// @param inAmount The amount of `base` to convert.
    /// @param base The token that is being priced.
    /// @param quote The token that is the unit of account.
    /// @return bidOutAmount The amount of `quote` you would get for selling `inAmount` of `base`.
    /// @return askOutAmount The amount of `quote` you would spend for buying `inAmount` of `base`.
    function getQuotes(
        uint256 inAmount,
        address base,
        address quote
    ) external view returns (uint256 bidOutAmount, uint256 askOutAmount);
}

// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25

pragma solidity ^0.8.25;

import {IPriceOracle} from "./IPriceOracle.sol";

struct Price {
    uint256 price;
    uint256 targetPrice;
    uint256 changePerBlock;
    uint256 lastUpdatedBlock;
    bool increase;
}

interface IPushOracle is IPriceOracle {
    function setPrice(
        address base,
        address quote,
        uint256 bqPrice,
        uint256 qbPrice
    ) external;

    function setPrices(
        address[] memory bases,
        address[] memory quotes,
        uint256[] memory bqPrices,
        uint256[] memory qbPrices
    ) external;

    function prices(
        address base,
        address quote
    ) external view returns (Price memory);

    function setPriceOverTime(
        address base,
        address quote,
        uint256 bqTargetPrice,
        uint256 qbTargetPrice,
        uint256 changePerBlock,
        bool increase
    ) external;

    function setPricesOverTime(
        address[] memory bases,
        address[] memory quotes,
        uint256[] memory bqTargetPrices,
        uint256[] memory qbTargetPrices,
        uint256[] memory changePerBlocks,
        bool[] memory increases
    ) external;

    function getCurrentPrice(
        address base,
        address quote
    ) external view returns (uint256);
}

File 10 of 13 : Errors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

/// @title Errors
/// @custom:security-contact [email protected]
/// @author Euler Labs (https://www.eulerlabs.com/)
/// @notice Collects common errors in PriceOracles.
library Errors {
    /// @notice The external feed returned an invalid answer.
    error PriceOracle_InvalidAnswer();
    /// @notice The configuration parameters for the PriceOracle are invalid.
    error PriceOracle_InvalidConfiguration();
    /// @notice The base/quote path is not supported.
    /// @param base The address of the base asset.
    /// @param quote The address of the quote asset.
    error PriceOracle_NotSupported(address base, address quote);
    /// @notice The quote cannot be completed due to overflow.
    error PriceOracle_Overflow();
    /// @notice The price is too stale.
    /// @param staleness The time elapsed since the price was updated.
    /// @param maxStaleness The maximum time elapsed since the last price update.
    error PriceOracle_TooStale(uint256 staleness, uint256 maxStaleness);
    /// @notice The method can only be called by the governor.
    error Governance_CallerNotGovernor();
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
import {Errors} from "./Errors.sol";

type Scale is uint256;

/// @title ScaleUtils
/// @custom:security-contact [email protected]
/// @author Euler Labs (https://www.eulerlabs.com/)
/// @notice Utilities for handling decimal conversion of unit price feeds.
library ScaleUtils {
    uint256 internal constant PRICE_SCALE_MASK = 0x00000000000000000000000000000000ffffffffffffffffffffffffffffffff;
    /// @notice The maximum allowed exponent for Scale components.
    /// @dev 38 is the largest integer exponent of 10 that fits in 128 bits.
    uint256 internal constant MAX_EXPONENT = 38;

    /// @notice Create a `Scale` by packing 2 powers of 10.
    /// @dev Upper 128 bits occupied by 10^feedExponent.
    /// Lower 128 bits occupied by 10^priceExponent.
    /// @param priceExponent The power for `priceScale = 10**priceExponent`.
    /// @param feedExponent The power for `feedScale = 10**feedExponent`.
    /// @return The two scale factors packed in `Scale`.
    function from(uint8 priceExponent, uint8 feedExponent) internal pure returns (Scale) {
        if (priceExponent > MAX_EXPONENT || feedExponent > MAX_EXPONENT) {
            revert Errors.PriceOracle_Overflow();
        }
        return Scale.wrap((10 ** feedExponent << 128) | 10 ** priceExponent);
    }

    /// @notice Calculate the direction of pricing, or revert if no match.
    /// @param givenBase The base asset supplied by the caller.
    /// @param base The base asset in the price oracle adapter.
    /// @param givenQuote The quote asset supplied by the caller.
    /// @param quote The quote asset in the price oracle adapter.
    /// @return False if base/quote, true if quote/base else revert.
    function getDirectionOrRevert(address givenBase, address base, address givenQuote, address quote)
        internal
        pure
        returns (bool)
    {
        if (givenBase == base && givenQuote == quote) return false;
        if (givenBase == quote && givenQuote == base) return true;
        revert Errors.PriceOracle_NotSupported(givenBase, givenQuote);
    }

    /// @notice Calculate the scale factors for converting a unit price.
    /// @param baseDecimals The decimals of the base asset.
    /// @param quoteDecimals The decimals of the quote asset.
    /// @param feedDecimals The decimals of the feed, already incorporated into the price.
    /// @return The scale factors used for price conversions.
    function calcScale(uint8 baseDecimals, uint8 quoteDecimals, uint8 feedDecimals) internal pure returns (Scale) {
        return from(quoteDecimals, feedDecimals + baseDecimals);
    }

    /// @notice Convert the price by applying scale factors.
    /// @param inAmount The amount of `base` to convert.
    /// @param unitPrice The unit price reported by the feed.
    /// @param scale The scale factors returned by `calcScale`.
    /// @param inverse Whether to price base/quote or quote/base.
    /// @return The resulting outAmount.
    function calcOutAmount(uint256 inAmount, uint256 unitPrice, Scale scale, bool inverse)
        internal
        pure
        returns (uint256)
    {
        uint256 priceScale = Scale.unwrap(scale) & PRICE_SCALE_MASK;
        uint256 feedScale = Scale.unwrap(scale) >> 128;
        if (inverse) {
            // (inAmount * feedScale) / (priceScale * unitPrice)
            return FixedPointMathLib.fullMulDiv(inAmount, feedScale, priceScale * unitPrice);
        } else {
            // (inAmount * priceScale * unitPrice) / feedScale
            return FixedPointMathLib.fullMulDiv(inAmount, priceScale * unitPrice, feedScale);
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IPriceOracle} from "src/interfaces/IPriceOracle.sol";
import {Errors} from "src/lib/euler/Errors.sol";
import {ScaleUtils, Scale} from "src/lib/euler/ScaleUtils.sol";

/// @title BaseAdapter
/// @custom:security-contact [email protected]
/// @author Euler Labs (https://www.eulerlabs.com/)
/// @notice Abstract adapter with virtual bid/ask pricing.
abstract contract BaseAdapter is IPriceOracle {
    /// @inheritdoc IPriceOracle
    function getQuote(uint256 inAmount, address base, address quote) external view returns (uint256) {
        return _getQuote(inAmount, base, quote);
    }

    /// @inheritdoc IPriceOracle
    /// @dev Does not support true bid/ask pricing.
    function getQuotes(uint256 inAmount, address base, address quote) external view returns (uint256, uint256) {
        uint256 outAmount = _getQuote(inAmount, base, quote);
        return (outAmount, outAmount);
    }

    /// @notice Call `decimals()`, falling back to 18 decimals.
    /// @param asset ERC20 token address or other asset.
    /// @dev Oracles can use ERC-7535, ISO 4217 or other conventions to represent non-ERC20 assets as addresses.
    /// Integrator Note: `_getDecimals` will return 18 if `asset` is:
    /// - an EOA or a to-be-deployed contract (which may implement `decimals()` after deployment).
    /// - a contract that does not implement `decimals()`.
    /// @return The decimals of the asset.
    function _getDecimals(address asset) internal view returns (uint8) {
        (bool success, bytes memory data) = address(asset).staticcall(abi.encodeCall(IERC20Metadata.decimals, ()));
        return success && data.length == 32 ? abi.decode(data, (uint8)) : 18;
    }

    /// @notice Return the quote for the given price query.
    /// @dev Must be overridden in the inheriting contract.
    function _getQuote(uint256, address, address) internal view virtual returns (uint256);
}

// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25

pragma solidity ^0.8.25;

// https://docs.synthetix.io/contracts/source/contracts/owned
contract Owned {
    address public owner;
    address public nominatedOwner;

    event OwnerNominated(address newOwner);
    event OwnerChanged(address oldOwner, address newOwner);

    constructor(address _owner) {
        require(_owner != address(0), "Owned/owner-zero");
        owner = _owner;

        emit OwnerChanged(address(0), _owner);
    }

    function nominateNewOwner(address _owner) external virtual onlyOwner {
        nominatedOwner = _owner;

        emit OwnerNominated(_owner);
    }

    function acceptOwnership() external virtual {
        require(
            msg.sender == nominatedOwner,
            "Owned/not-nominated"
        );

        emit OwnerChanged(owner, nominatedOwner);

        owner = nominatedOwner;
        nominatedOwner = address(0);
    }

    modifier onlyOwner() {
        _onlyOwner();
        _;
    }

    function _onlyOwner() private view {
        require(
            msg.sender == owner,
            "Owned/not-owner"
        );
    }
}

Settings
{
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": true,
    "runs": 20000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "solmate/=lib/solmate/src/",
    "safe-smart-account/=lib/safe-smart-account/contracts/",
    "weiroll/=lib/weiroll/contracts/",
    "solady/=lib/solady/src/",
    "bitlib/=lib/solidity-bytes-utils/contracts/",
    "ERC-7540/=lib/ERC-7540-Reference/src/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@pyth/=lib/euler-price-oracle/lib/pyth-sdk-solidity/",
    "@redstone/evm-connector/=lib/euler-price-oracle/lib/redstone-oracles-monorepo/packages/evm-connector/contracts/",
    "@solady/=lib/euler-price-oracle/lib/solady/src/",
    "@uniswap/v3-core/=lib/euler-price-oracle/lib/v3-core/",
    "@uniswap/v3-periphery/=lib/euler-price-oracle/lib/v3-periphery/",
    "ERC-7540-Reference/=lib/ERC-7540-Reference/src/",
    "devtools/=lib/devtools/packages/toolbox-foundry/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "euler-price-oracle/=lib/euler-price-oracle/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "layerzero-v2/=lib/layerzero-v2/",
    "openzeppelin/=lib/euler-price-oracle/lib/openzeppelin-contracts/contracts/",
    "pyth-sdk-solidity/=lib/euler-price-oracle/lib/pyth-sdk-solidity/",
    "redstone-oracles-monorepo/=lib/euler-price-oracle/lib/",
    "solidity-bytes-utils/=lib/solidity-bytes-utils/contracts/",
    "v3-core/=lib/v3-core/",
    "v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Misconfigured","type":"error"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"PriceOracle_NotSupported","type":"error"},{"inputs":[],"name":"PriceOracle_Overflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerNominated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"base","type":"address"},{"indexed":false,"internalType":"address","name":"quote","type":"address"},{"indexed":false,"internalType":"uint256","name":"bqPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"qbPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"targetBqPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"targetQbPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"changePerBlock","type":"uint256"}],"name":"PriceUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"getCurrentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"inAmount","type":"uint256"},{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"getQuote","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"inAmount","type":"uint256"},{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"getQuotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"nominateNewOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nominatedOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"prices","outputs":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"targetPrice","type":"uint256"},{"internalType":"uint256","name":"changePerBlock","type":"uint256"},{"internalType":"uint256","name":"lastUpdatedBlock","type":"uint256"},{"internalType":"bool","name":"increase","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"},{"internalType":"uint256","name":"bqPrice","type":"uint256"},{"internalType":"uint256","name":"qbPrice","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"},{"internalType":"uint256","name":"bqTargetPrice","type":"uint256"},{"internalType":"uint256","name":"qbTargetPrice","type":"uint256"},{"internalType":"uint256","name":"changePerBlock","type":"uint256"},{"internalType":"bool","name":"increase","type":"bool"}],"name":"setPriceOverTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"bases","type":"address[]"},{"internalType":"address[]","name":"quotes","type":"address[]"},{"internalType":"uint256[]","name":"bqPrices","type":"uint256[]"},{"internalType":"uint256[]","name":"qbPrices","type":"uint256[]"}],"name":"setPrices","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"bases","type":"address[]"},{"internalType":"address[]","name":"quotes","type":"address[]"},{"internalType":"uint256[]","name":"bqTargetPrices","type":"uint256[]"},{"internalType":"uint256[]","name":"qbTargetPrices","type":"uint256[]"},{"internalType":"uint256[]","name":"changesPerBlock","type":"uint256[]"},{"internalType":"bool[]","name":"increases","type":"bool[]"}],"name":"setPricesOverTime","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561000f575f5ffd5b50604051611ab3380380611ab383398101604081905261002e916100d9565b806001600160a01b03811661007c5760405162461bcd60e51b815260206004820152601060248201526f4f776e65642f6f776e65722d7a65726f60801b604482015260640160405180910390fd5b5f80546001600160a01b0319166001600160a01b03831690811782556040805192835260208301919091527fb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c910160405180910390a15050610106565b5f602082840312156100e9575f5ffd5b81516001600160a01b03811681146100ff575f5ffd5b9392505050565b6119a0806101135f395ff3fe608060405234801561000f575f5ffd5b50600436106100da575f3560e01c806353a47bb711610088578063a405d31211610063578063a405d3121461026c578063ae68676c1461027f578063d073aec1146102a0578063db16a555146102b3575f5ffd5b806353a47bb71461020057806379ba5097146102455780638da5cb5b1461024d575f5ffd5b80631791ad5d116100b85780631791ad5d146101695780631c7efdf01461017c5780631f3124041461018f575f5ffd5b80630579e61f146100de57806306fdde031461010b5780631627540c14610154575b5f5ffd5b6100f16100ec366004611228565b6102c6565b604080519283526020830191909152015b60405180910390f35b6101476040518060400160405280600a81526020017f507573684f7261636c650000000000000000000000000000000000000000000081525081565b6040516101029190611283565b6101676101623660046112d3565b6102e3565b005b6101676101773660046114c8565b610364565b61016761018a3660046115d4565b61046c565b6101d661019d36600461168d565b600260208181525f9384526040808520909152918352912080546001820154928201546003830154600490930154919392909160ff1685565b6040805195865260208601949094529284019190915260608301521515608082015260a001610102565b6001546102209073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610102565b610167610526565b5f546102209073ffffffffffffffffffffffffffffffffffffffff1681565b61016761027a3660046116be565b61064e565b61029261028d366004611228565b610668565b604051908152602001610102565b6101676102ae3660046116fd565b61067e565b6102926102c136600461168d565b61069c565b5f5f5f6102d48686866106b0565b9250829150505b935093915050565b6102eb610756565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f906a1c6bd7e3091ea86693dd029a831c19049ce77f1dce2ce0bab1cacbabce229060200160405180910390a150565b61036c610756565b8551855161037a82826107d8565b610386885187516107d8565b610392885186516107d8565b61039e885185516107d8565b6103aa885184516107d8565b5f5b8851811015610461576104598982815181106103ca576103ca611758565b60200260200101518983815181106103e4576103e4611758565b60200260200101518984815181106103fe576103fe611758565b602002602001015189858151811061041857610418611758565b602002602001015189868151811061043257610432611758565b602002602001015189878151811061044c5761044c611758565b6020026020010151610815565b6001016103ac565b505050505050505050565b610474610756565b8351835161048282826107d8565b61048e865185516107d8565b61049a865184516107d8565b5f5b865181101561051d576105158782815181106104ba576104ba611758565b60200260200101518783815181106104d4576104d4611758565b60200260200101518784815181106104ee576104ee611758565b602002602001015187858151811061050857610508611758565b6020026020010151610bb6565b60010161049c565b50505050505050565b60015473ffffffffffffffffffffffffffffffffffffffff1633146105ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601360248201527f4f776e65642f6e6f742d6e6f6d696e617465640000000000000000000000000060448201526064015b60405180910390fd5b5f546001546040805173ffffffffffffffffffffffffffffffffffffffff93841681529290911660208301527fb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c910160405180910390a1600180545f80547fffffffffffffffffffffffff000000000000000000000000000000000000000090811673ffffffffffffffffffffffffffffffffffffffff841617909155169055565b610656610756565b61066284848484610bb6565b50505050565b5f6106748484846106b0565b90505b9392505050565b610686610756565b610694868686868686610815565b505050505050565b5f6106a78383610e6e565b90505b92915050565b5f5f6106bc8484610e6e565b9050805f03610717576040517f4ca22af000000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8086166004830152841660248201526044016105a3565b5f61072185610f89565b90505f61072d85610f89565b90505f61073c83836012611080565b905061074a8885835f611094565b98975050505050505050565b5f5473ffffffffffffffffffffffffffffffffffffffff1633146107d6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f4f776e65642f6e6f742d6f776e6572000000000000000000000000000000000060448201526064016105a3565b565b808214610811576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b8315801561082257508215155b8061083557508215801561083557508315155b8061083e575081155b15610875576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6108808787610e6e565b90505f61088d8789610e6e565b905081158061089a575080155b156108d1576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82156109165785821115610911576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610950565b85821015610950576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a0016040528083815260200187815260200185815260200143815260200184151581525060025f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018681526020018581526020014381526020018415151581525060025f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf888884848a8a8a604051610ba4979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a15050505050505050565b81158015610bc357508015155b80610bd6575080158015610bd657508115155b15610c0d576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a001604052808381526020018381526020015f81526020014381526020015f151581525060025f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018281526020015f81526020014381526020015f151581525060025f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf8484848486865f604051610e60979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a150505050565b73ffffffffffffffffffffffffffffffffffffffff8083165f9081526002602081815260408084209486168452938152838320845160a08101865281548152600182015492810192909252918201549381018490526003820154606082015260049091015460ff161515608082015290911580610eee5750438160600151145b15610efb575190506106aa565b5f816060015143610f0c91906117b2565b8260400151610f1b91906117c5565b90505f81835f0151610f2d91906117dc565b9050826080015115610f5a5782602001518111610f4a5780610f50565b82602001515b93505050506106aa565b82518211610f74578251610f6f9083906117b2565b610f76565b5f5b905082602001518110610f4a5780610f50565b60408051600481526024810182526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f313ce5670000000000000000000000000000000000000000000000000000000017905290515f918291829173ffffffffffffffffffffffffffffffffffffffff86169161100991906117ef565b5f60405180830381855afa9150503d805f8114611041576040519150601f19603f3d011682016040523d82523d5f602084013e611046565b606091505b5091509150818015611059575080516020145b611064576012611078565b80806020019051810190611078919061180a565b949350505050565b5f6106748361108f868561182a565b6110e4565b5f6fffffffffffffffffffffffffffffffff8316608084901c83156110d0576110c787826110c289866117c5565b611153565b92505050611078565b6110c7876110de88856117c5565b83611153565b5f60268360ff1611806110fa575060268260ff16115b15611131576040517f52a1f2a000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61113c83600a61195c565b608061114984600a61195c565b901b179392505050565b828202818385830414851517026111f9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8385098181108201900382848609835f0384168285116111ac5763ae47f7025f526004601cfd5b93849004938382119092035f839003839004600101029203041760026003830281188084028203028084028203028084028203028084028203028084028203028084029091030202610677565b0492915050565b803573ffffffffffffffffffffffffffffffffffffffff81168114611223575f5ffd5b919050565b5f5f5f6060848603121561123a575f5ffd5b8335925061124a60208501611200565b915061125860408501611200565b90509250925092565b5f5b8381101561127b578181015183820152602001611263565b50505f910152565b602081525f82518060208401526112a1816040850160208701611261565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b5f602082840312156112e3575f5ffd5b6106a782611200565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715611360576113606112ec565b604052919050565b5f67ffffffffffffffff821115611381576113816112ec565b5060051b60200190565b5f82601f83011261139a575f5ffd5b81356113ad6113a882611368565b611319565b8082825260208201915060208360051b8601019250858311156113ce575f5ffd5b602085015b838110156113f2576113e481611200565b8352602092830192016113d3565b5095945050505050565b5f82601f83011261140b575f5ffd5b81356114196113a882611368565b8082825260208201915060208360051b86010192508583111561143a575f5ffd5b602085015b838110156113f257803583526020928301920161143f565b80358015158114611223575f5ffd5b5f82601f830112611475575f5ffd5b81356114836113a882611368565b8082825260208201915060208360051b8601019250858311156114a4575f5ffd5b602085015b838110156113f2576114ba81611457565b8352602092830192016114a9565b5f5f5f5f5f5f60c087890312156114dd575f5ffd5b863567ffffffffffffffff8111156114f3575f5ffd5b6114ff89828a0161138b565b965050602087013567ffffffffffffffff81111561151b575f5ffd5b61152789828a0161138b565b955050604087013567ffffffffffffffff811115611543575f5ffd5b61154f89828a016113fc565b945050606087013567ffffffffffffffff81111561156b575f5ffd5b61157789828a016113fc565b935050608087013567ffffffffffffffff811115611593575f5ffd5b61159f89828a016113fc565b92505060a087013567ffffffffffffffff8111156115bb575f5ffd5b6115c789828a01611466565b9150509295509295509295565b5f5f5f5f608085870312156115e7575f5ffd5b843567ffffffffffffffff8111156115fd575f5ffd5b6116098782880161138b565b945050602085013567ffffffffffffffff811115611625575f5ffd5b6116318782880161138b565b935050604085013567ffffffffffffffff81111561164d575f5ffd5b611659878288016113fc565b925050606085013567ffffffffffffffff811115611675575f5ffd5b611681878288016113fc565b91505092959194509250565b5f5f6040838503121561169e575f5ffd5b6116a783611200565b91506116b560208401611200565b90509250929050565b5f5f5f5f608085870312156116d1575f5ffd5b6116da85611200565b93506116e860208601611200565b93969395505050506040820135916060013590565b5f5f5f5f5f5f60c08789031215611712575f5ffd5b61171b87611200565b955061172960208801611200565b945060408701359350606087013592506080870135915061174c60a08801611457565b90509295509295509295565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b818103818111156106aa576106aa611785565b80820281158282048414176106aa576106aa611785565b808201808211156106aa576106aa611785565b5f8251611800818460208701611261565b9190910192915050565b5f6020828403121561181a575f5ffd5b815160ff81168114610677575f5ffd5b60ff81811683821601908111156106aa576106aa611785565b6001815b60018411156102db5780850481111561186257611862611785565b600184161561187057908102905b60019390931c928002611847565b5f8261188c575060016106aa565b8161189857505f6106aa565b81600181146118ae57600281146118b8576118d4565b60019150506106aa565b60ff8411156118c9576118c9611785565b50506001821b6106aa565b5060208310610133831016604e8410600b84101617156118f7575081810a6106aa565b6119227fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484611843565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0482111561195457611954611785565b029392505050565b5f6106a760ff84168361187e56fea26469706673582212207cd259617a62de2491b61d9d4f549ded2d13f8a08b908adec394e429b77f0fb664736f6c634300081c0033000000000000000000000000919d5a6f2cbc0731380c26b4ac4f6183dd3a40c8

Deployed Bytecode

0x608060405234801561000f575f5ffd5b50600436106100da575f3560e01c806353a47bb711610088578063a405d31211610063578063a405d3121461026c578063ae68676c1461027f578063d073aec1146102a0578063db16a555146102b3575f5ffd5b806353a47bb71461020057806379ba5097146102455780638da5cb5b1461024d575f5ffd5b80631791ad5d116100b85780631791ad5d146101695780631c7efdf01461017c5780631f3124041461018f575f5ffd5b80630579e61f146100de57806306fdde031461010b5780631627540c14610154575b5f5ffd5b6100f16100ec366004611228565b6102c6565b604080519283526020830191909152015b60405180910390f35b6101476040518060400160405280600a81526020017f507573684f7261636c650000000000000000000000000000000000000000000081525081565b6040516101029190611283565b6101676101623660046112d3565b6102e3565b005b6101676101773660046114c8565b610364565b61016761018a3660046115d4565b61046c565b6101d661019d36600461168d565b600260208181525f9384526040808520909152918352912080546001820154928201546003830154600490930154919392909160ff1685565b6040805195865260208601949094529284019190915260608301521515608082015260a001610102565b6001546102209073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610102565b610167610526565b5f546102209073ffffffffffffffffffffffffffffffffffffffff1681565b61016761027a3660046116be565b61064e565b61029261028d366004611228565b610668565b604051908152602001610102565b6101676102ae3660046116fd565b61067e565b6102926102c136600461168d565b61069c565b5f5f5f6102d48686866106b0565b9250829150505b935093915050565b6102eb610756565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f906a1c6bd7e3091ea86693dd029a831c19049ce77f1dce2ce0bab1cacbabce229060200160405180910390a150565b61036c610756565b8551855161037a82826107d8565b610386885187516107d8565b610392885186516107d8565b61039e885185516107d8565b6103aa885184516107d8565b5f5b8851811015610461576104598982815181106103ca576103ca611758565b60200260200101518983815181106103e4576103e4611758565b60200260200101518984815181106103fe576103fe611758565b602002602001015189858151811061041857610418611758565b602002602001015189868151811061043257610432611758565b602002602001015189878151811061044c5761044c611758565b6020026020010151610815565b6001016103ac565b505050505050505050565b610474610756565b8351835161048282826107d8565b61048e865185516107d8565b61049a865184516107d8565b5f5b865181101561051d576105158782815181106104ba576104ba611758565b60200260200101518783815181106104d4576104d4611758565b60200260200101518784815181106104ee576104ee611758565b602002602001015187858151811061050857610508611758565b6020026020010151610bb6565b60010161049c565b50505050505050565b60015473ffffffffffffffffffffffffffffffffffffffff1633146105ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601360248201527f4f776e65642f6e6f742d6e6f6d696e617465640000000000000000000000000060448201526064015b60405180910390fd5b5f546001546040805173ffffffffffffffffffffffffffffffffffffffff93841681529290911660208301527fb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c910160405180910390a1600180545f80547fffffffffffffffffffffffff000000000000000000000000000000000000000090811673ffffffffffffffffffffffffffffffffffffffff841617909155169055565b610656610756565b61066284848484610bb6565b50505050565b5f6106748484846106b0565b90505b9392505050565b610686610756565b610694868686868686610815565b505050505050565b5f6106a78383610e6e565b90505b92915050565b5f5f6106bc8484610e6e565b9050805f03610717576040517f4ca22af000000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8086166004830152841660248201526044016105a3565b5f61072185610f89565b90505f61072d85610f89565b90505f61073c83836012611080565b905061074a8885835f611094565b98975050505050505050565b5f5473ffffffffffffffffffffffffffffffffffffffff1633146107d6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f4f776e65642f6e6f742d6f776e6572000000000000000000000000000000000060448201526064016105a3565b565b808214610811576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b8315801561082257508215155b8061083557508215801561083557508315155b8061083e575081155b15610875576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6108808787610e6e565b90505f61088d8789610e6e565b905081158061089a575080155b156108d1576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82156109165785821115610911576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610950565b85821015610950576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a0016040528083815260200187815260200185815260200143815260200184151581525060025f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018681526020018581526020014381526020018415151581525060025f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf888884848a8a8a604051610ba4979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a15050505050505050565b81158015610bc357508015155b80610bd6575080158015610bd657508115155b15610c0d576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a001604052808381526020018381526020015f81526020014381526020015f151581525060025f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018281526020015f81526020014381526020015f151581525060025f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf8484848486865f604051610e60979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a150505050565b73ffffffffffffffffffffffffffffffffffffffff8083165f9081526002602081815260408084209486168452938152838320845160a08101865281548152600182015492810192909252918201549381018490526003820154606082015260049091015460ff161515608082015290911580610eee5750438160600151145b15610efb575190506106aa565b5f816060015143610f0c91906117b2565b8260400151610f1b91906117c5565b90505f81835f0151610f2d91906117dc565b9050826080015115610f5a5782602001518111610f4a5780610f50565b82602001515b93505050506106aa565b82518211610f74578251610f6f9083906117b2565b610f76565b5f5b905082602001518110610f4a5780610f50565b60408051600481526024810182526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f313ce5670000000000000000000000000000000000000000000000000000000017905290515f918291829173ffffffffffffffffffffffffffffffffffffffff86169161100991906117ef565b5f60405180830381855afa9150503d805f8114611041576040519150601f19603f3d011682016040523d82523d5f602084013e611046565b606091505b5091509150818015611059575080516020145b611064576012611078565b80806020019051810190611078919061180a565b949350505050565b5f6106748361108f868561182a565b6110e4565b5f6fffffffffffffffffffffffffffffffff8316608084901c83156110d0576110c787826110c289866117c5565b611153565b92505050611078565b6110c7876110de88856117c5565b83611153565b5f60268360ff1611806110fa575060268260ff16115b15611131576040517f52a1f2a000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61113c83600a61195c565b608061114984600a61195c565b901b179392505050565b828202818385830414851517026111f9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8385098181108201900382848609835f0384168285116111ac5763ae47f7025f526004601cfd5b93849004938382119092035f839003839004600101029203041760026003830281188084028203028084028203028084028203028084028203028084028203028084029091030202610677565b0492915050565b803573ffffffffffffffffffffffffffffffffffffffff81168114611223575f5ffd5b919050565b5f5f5f6060848603121561123a575f5ffd5b8335925061124a60208501611200565b915061125860408501611200565b90509250925092565b5f5b8381101561127b578181015183820152602001611263565b50505f910152565b602081525f82518060208401526112a1816040850160208701611261565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b5f602082840312156112e3575f5ffd5b6106a782611200565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715611360576113606112ec565b604052919050565b5f67ffffffffffffffff821115611381576113816112ec565b5060051b60200190565b5f82601f83011261139a575f5ffd5b81356113ad6113a882611368565b611319565b8082825260208201915060208360051b8601019250858311156113ce575f5ffd5b602085015b838110156113f2576113e481611200565b8352602092830192016113d3565b5095945050505050565b5f82601f83011261140b575f5ffd5b81356114196113a882611368565b8082825260208201915060208360051b86010192508583111561143a575f5ffd5b602085015b838110156113f257803583526020928301920161143f565b80358015158114611223575f5ffd5b5f82601f830112611475575f5ffd5b81356114836113a882611368565b8082825260208201915060208360051b8601019250858311156114a4575f5ffd5b602085015b838110156113f2576114ba81611457565b8352602092830192016114a9565b5f5f5f5f5f5f60c087890312156114dd575f5ffd5b863567ffffffffffffffff8111156114f3575f5ffd5b6114ff89828a0161138b565b965050602087013567ffffffffffffffff81111561151b575f5ffd5b61152789828a0161138b565b955050604087013567ffffffffffffffff811115611543575f5ffd5b61154f89828a016113fc565b945050606087013567ffffffffffffffff81111561156b575f5ffd5b61157789828a016113fc565b935050608087013567ffffffffffffffff811115611593575f5ffd5b61159f89828a016113fc565b92505060a087013567ffffffffffffffff8111156115bb575f5ffd5b6115c789828a01611466565b9150509295509295509295565b5f5f5f5f608085870312156115e7575f5ffd5b843567ffffffffffffffff8111156115fd575f5ffd5b6116098782880161138b565b945050602085013567ffffffffffffffff811115611625575f5ffd5b6116318782880161138b565b935050604085013567ffffffffffffffff81111561164d575f5ffd5b611659878288016113fc565b925050606085013567ffffffffffffffff811115611675575f5ffd5b611681878288016113fc565b91505092959194509250565b5f5f6040838503121561169e575f5ffd5b6116a783611200565b91506116b560208401611200565b90509250929050565b5f5f5f5f608085870312156116d1575f5ffd5b6116da85611200565b93506116e860208601611200565b93969395505050506040820135916060013590565b5f5f5f5f5f5f60c08789031215611712575f5ffd5b61171b87611200565b955061172960208801611200565b945060408701359350606087013592506080870135915061174c60a08801611457565b90509295509295509295565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b818103818111156106aa576106aa611785565b80820281158282048414176106aa576106aa611785565b808201808211156106aa576106aa611785565b5f8251611800818460208701611261565b9190910192915050565b5f6020828403121561181a575f5ffd5b815160ff81168114610677575f5ffd5b60ff81811683821601908111156106aa576106aa611785565b6001815b60018411156102db5780850481111561186257611862611785565b600184161561187057908102905b60019390931c928002611847565b5f8261188c575060016106aa565b8161189857505f6106aa565b81600181146118ae57600281146118b8576118d4565b60019150506106aa565b60ff8411156118c9576118c9611785565b50506001821b6106aa565b5060208310610133831016604e8410600b84101617156118f7575081810a6106aa565b6119227fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484611843565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0482111561195457611954611785565b029392505050565b5f6106a760ff84168361187e56fea26469706673582212207cd259617a62de2491b61d9d4f549ded2d13f8a08b908adec394e429b77f0fb664736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000919d5a6f2cbc0731380c26b4ac4f6183dd3a40c8

-----Decoded View---------------
Arg [0] : _owner (address): 0x919D5a6F2CBc0731380C26B4AC4f6183dD3A40C8

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000919d5a6f2cbc0731380c26b4ac4f6183dd3a40c8


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0xb2a4E3B4843ADea2abdCc02aa9db8261Fd9323AD
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.