ETH Price: $4,452.34 (+0.28%)

Token

Blade LP Token (BladeLP)

Overview

Max Total Supply

6,759.564766027309907968 BladeLP

Holders

4

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
6,714.517437652750303232 BladeLP

Value
$0.00
0x4bb4c1b0745ef7b4642feeccd0740dec417ca0a0
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
BladeVerifiedExchange

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 800 runs

Other Settings:
paris EvmVersion
File 1 of 65 : BladeVerifiedExchange.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {SD59x18, sd} from "@prb/math/src/SD59x18.sol";

import "../base/BladeErrors.sol";
import {Constants} from "../base/Constants.sol";
import {Signature, UtilStruct} from "../types/BladeTypes.sol";
import {BladeCommonExchange} from "../base/BladeCommonExchange.sol";
import {OracleManager} from "../variants/OracleManager.sol";
import {SafeAggregatorInterface, AggregatorV3Interface} from "../libraries/SafeAggregatorInterface.sol";
import {WrapperContractInterface} from "../interfaces/WrapperContractInterface.sol";
import {BladeSignatureLib} from "../libraries/BladeSignatureLib.sol";

contract BladeVerifiedExchange is BladeCommonExchange, OracleManager {
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.AddressSet;
    using SafeCast for uint256;
    using SafeCast for int256;

    // For prevention of replay attacks
    mapping(bytes32 => bool) invalidatedDigests;

    error DigestAlreadyUsed();

    constructor(
        address theSigner,
        address theWrapper,
        address[] memory tokens,
        address[] memory _oracles,
        uint256[] memory minTimeTolerances,
        address initialOwner
    )
        BladeCommonExchange(theSigner, theWrapper, tokens, initialOwner)
        OracleManager(tokens, _oracles, minTimeTolerances)
    {}

    function _isToken(address token) internal view override returns (bool) {
        return isToken(token);
    }

    function _nTokens() internal view override returns (uint) {
        return nTokens();
    }

    function _tokenAt(uint index) internal view override returns (address) {
        return tokenAt(index);
    }

    function _getLastBalance(address token) internal view override returns (uint256) {
        return getLastBalance(token);
    }

    function _getTokenDecimals(address token) internal view override returns (uint8) {
        return tokenDecimals[token];
    }

    // Used to invalidate a signature digest
    function _checkAndInvalidateDigest(bytes32 theDigest) private {
        if (invalidatedDigests[theDigest]) {
            revert DigestAlreadyUsed();
        }

        invalidatedDigests[theDigest] = true;
    }

    function _unpackGoodUntil(
        uint256 packedGoodUntil
    )
        private pure
        returns (
            uint256 pX,
            uint256 pY,
            uint256 wX,
            uint256 wY,
            uint256 k
        )
    {
        /*
        * Input asset price in 8 decimals - uint64
        * Output asset price in 8 decimals - uint64
        * k value in 18 decimals - uint64
        * Input asset weight - uint16
        * Output asset weight - uint16
        * Current good until value - uint32 - can be taken as uint256(uint32(packedGoodUntil))
        */
        // goodUntil = uint256(uint32(packedGoodUntil));
        packedGoodUntil = packedGoodUntil >> 32;
        wY = uint256(uint16(packedGoodUntil));
        packedGoodUntil = packedGoodUntil >> 16;
        wX = uint256(uint16(packedGoodUntil));
        packedGoodUntil = packedGoodUntil >> 16;
        k = uint256(uint64(packedGoodUntil));
        packedGoodUntil = packedGoodUntil >> 64;
        pY = uint256(uint64(packedGoodUntil));
        packedGoodUntil = packedGoodUntil >> 64;
        pX = uint256(uint64(packedGoodUntil));
    }

    /*
    Before calling:
    Set qX = lastBalances[inAsset];
    Set qY = lastBalances[outAsset];

    Multiply all quantities (q and in/out) by 10**(18-asset.decimals()).
    This puts all quantities in 18 decimals.

    Assumed decimals:
    K: 18
    Quantities: 18 (ONE_IN_DEFAULT_DECIMALS = 1e18)
    Prices: 8 (ONE_IN_PRICE_DECIMALS = 1e8)
    Weights: 0 (100 = 100)
    */
    function _swapIncreasesInvariant(
        uint256 inX,
        uint256 pX,
        uint256 qX,
        uint256 wX,
        uint256 outY,
        uint256 pY,
        uint256 qY,
        uint256 wY,
        uint256 k
    )
        private pure
        returns (bool)
    {
        uint256 invariantBefore;
        uint256 invariantAfter;
        {
            uint256 pqX = pX * qX / ONE_IN_PRICE_DECIMALS;
            uint256 pqwXk = _fractionalPow(pqX * wX, k);
            if (pqwXk > 0) {
                invariantBefore += (Constants.ONE_IN_DEFAULT_DECIMALS * pqX) / pqwXk;
            }

            uint256 pqY = pY * qY / ONE_IN_PRICE_DECIMALS;
            uint256 pqwYk = _fractionalPow(pqY * wY, k);
            if (pqwYk > 0) {
                invariantBefore += (Constants.ONE_IN_DEFAULT_DECIMALS * pqY) / pqwYk;
            }
        }
        {
            uint256 pqXinX = (pX * (qX + inX)) / ONE_IN_PRICE_DECIMALS;
            uint256 pqwXinXk = _fractionalPow(pqXinX * wX, k);
            if (pqwXinXk > 0) {
                invariantAfter += (Constants.ONE_IN_DEFAULT_DECIMALS * pqXinX) / pqwXinXk;
            }

            uint256 pqYoutY = pY * (qY - outY) / ONE_IN_PRICE_DECIMALS;
            uint256 pqwYoutYk = _fractionalPow(pqYoutY * wY, k);
            if (pqwYoutYk > 0) {
                invariantAfter += (Constants.ONE_IN_DEFAULT_DECIMALS * pqYoutY) / pqwYoutYk;
            }
        }
        return invariantAfter > invariantBefore;
    }

    function _fractionalPow(
        uint256 input,
        uint256 pow
    )
        private pure
        returns (uint256)
    {
        if (input == 0) {
            return 0;
        } else {
            // input^(pow/1e18) -> exp2( (pow * log2( input ) / 1e18 ) )

            // Convert input to SD59x18 and compute log2(input)
            SD59x18 log2Input = sd(input.toInt256()).log2();

            // Multiply by pow and divide by 1e18 to scale properly
            SD59x18 exponent = sd(pow.toInt256()).mul(log2Input).div(sd(int256(Constants.ONE_IN_DEFAULT_DECIMALS)));

            // Compute exp2() and safely convert int256 to uint256
            int256 resultInt = exponent.exp2().unwrap();

            return resultInt.toUint256();
        }
    }

    function _currentDeltaOverLastBalance(address token) private view returns (uint256) {
        return IERC20(token).balanceOf(address(this)) - lastBalances[token];
    }

    function _sync(address token) internal override {
        lastBalances[token] = IERC20(token).balanceOf(address(this));
    }

    function _syncAll() private {
        uint i;
        uint n = assetSet.length();
        while (i < n) {
            _sync(tokenAt(i));
            i++;
        }
    }

    // _syncAndTransfer() and _unwrapAndForwardEth() are the two additional ways tokens leave the pool
    // Since they transfer assets, they are all marked as nonReentrant
    function _syncAndTransfer(
        address inputToken,
        address outputToken,
        address recipient,
        uint256 amount
    )
        private
        nonReentrant
    {
        _sync(inputToken);
        IERC20(outputToken).safeTransfer(recipient, amount);
        _sync(outputToken);
    }

    // Essentially transferAsset, but for raw ETH
    function _unwrapAndForwardEth(address recipient, uint256 amount) private nonReentrant {
        /* EFFECTS */
        WrapperContractInterface(WRAPPER_CONTRACT).withdraw(amount);
        _sync(WRAPPER_CONTRACT);
        /* INTERACTIONS */
        safeEthSend(recipient, amount);
    }

    function _verifyTokensAndGetAmounts(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount
    )
        private view
        returns (
            uint256 actualInput,
            uint256 fairOutput
        )
    {
        if (!isToken(inputToken)) revert TokenNotInPool();
        if (!isToken(outputToken)) revert TokenNotInPool();

        actualInput = _currentDeltaOverLastBalance(inputToken);
        fairOutput = calculateFairOutput(inputAmount, actualInput, outputAmount);
    }

    function _swapValidation(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature memory theSignature
    )
        private
        returns (
            uint256 actualInput,
            uint256 fairOutput
        )
    {
        bytes32 digest = _verifySwapSignature(
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature
        );

        // Validate digest already used
        _checkAndInvalidateDigest(digest);

        (actualInput, fairOutput) = _verifyTokensAndGetAmounts(
            inputToken,
            outputToken,
            inputAmount,
            outputAmount
        );
        _unpackAndCheckInvariantAndPrice(
            inputToken,
            actualInput,
            outputToken,
            fairOutput,
            goodUntil
        );
    }

    function sellTokenForEth(
        address inputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    )
        external
        marketIsRunning
        receivedInTime(uint256(uint32(goodUntil)))
    {
        _sellTokenForEth(
            inputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature,
            auxiliaryData
        );
    }

    function _sellTokenForEth(
        address inputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature memory theSignature,
        bytes memory auxiliaryData
    )
        private
    {
        (uint256 actualInput, uint256 fairOutput) = _swapValidation(
            inputToken,
            WRAPPER_CONTRACT,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature
        );

        // We have to _sync the input token manually here
        _sync(inputToken);
        _unwrapAndForwardEth(destinationAddress, fairOutput);

        emit Swapped(
            inputToken,
            WRAPPER_CONTRACT,
            destinationAddress,
            actualInput,
            fairOutput,
            auxiliaryData
        );
    }

    function swap(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    )
        external
        marketIsRunning
        receivedInTime(uint256(uint32(goodUntil)))
    {
        _swap(
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature,
            auxiliaryData
        );
    }

    function _swap(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature memory theSignature,
        bytes memory auxiliaryData
    )
        private
    {
        (uint256 actualInput, uint256 fairOutput) = _swapValidation(
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature
        );

        // OK, now we are safe to transfer
        _syncAndTransfer(inputToken, outputToken, destinationAddress, fairOutput);
        emit Swapped(
            inputToken,
            outputToken,
            destinationAddress,
            actualInput,
            fairOutput,
            auxiliaryData
        );
    }

    // Oracle verification integration
    function deposit(
        address depositor,
        uint256[] calldata depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    )
        public payable override
        marketIsRunning
        receivedInTime(goodUntil)
        validLockTime(lockTime)
    {
        _deposit(
            depositor,
            depositAmounts,
            lockTime,
            poolTokens,
            goodUntil,
            theSignature,
            extraData
        );
    }

    function _deposit(
        address depositor,
        uint256[] memory depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature memory theSignature,
        bytes memory extraData
    )
        private
    {
        // wraps msg.value if existent as it will be used in the following checks
        _wrapMsgValue();

        bytes32 digest = _depositChecks(
            depositor,
            depositAmounts,
            lockTime,
            poolTokens,
            goodUntil,
            theSignature,
            extraData
        );

        // Validate digest already used
        _checkAndInvalidateDigest(digest);

        // Did we actually deposit what we said we would? Revert otherwise
        _verifyDepositAmountsWithOracles(depositAmounts, poolTokens);

        // OK now we're good
        _syncAll();
        _finalizeDeposit(depositor, lockTime, poolTokens);
    }

    // Oracle verification integration
    function depositSingleAsset(
        address depositor,
        address inputToken,
        uint256 inputAmount,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    )
        external payable
        marketIsRunning
        receivedInTime(goodUntil)
        validLockTime(lockTime)
    {
        _depositSingleAsset(
            depositor,
            inputToken,
            inputAmount,
            lockTime,
            poolTokens,
            goodUntil,
            theSignature,
            extraData
        );
    }

    function _depositSingleAsset(
        address depositor,
        address inputToken,
        uint256 inputAmount,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature memory theSignature,
        bytes memory extraData
    )
        private
    {
        if (!isToken(inputToken)) revert TokenNotInPool();

        // wraps msg.value if existent as it will be used in the following checks
        _wrapMsgValue();

        bytes32 digest = _singleDepositChecks(
            depositor,
            inputToken,
            inputAmount,
            lockTime,
            poolTokens,
            goodUntil,
            theSignature,
            extraData
        );

        // Validate digest already used
        _checkAndInvalidateDigest(digest);

        // Did we actually deposit what we said we would? Revert otherwise
        _verifyDepositSingleAssetAmountWithOracles(inputToken, inputAmount, poolTokens);

        // sync the balance
        _sync(inputToken);

        _finalizeDeposit(depositor, lockTime, poolTokens);
    }

    function withdrawSingleAsset(
        address tokenHolder,
        uint256 poolTokenAmountToBurn,
        address assetAddress,
        uint256 assetAmount,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    )
        external override
        marketIsRunning
        onlyTokenHolder(tokenHolder)
        receivedInTime(goodUntil)
    {
        bool sendEthBack;
        if (assetAddress == ETH_SIGIL) {
            assetAddress = WRAPPER_CONTRACT;
            sendEthBack = true;
        }

        bytes32 digest = _singleWithdrawChecks(
            tokenHolder,
            poolTokenAmountToBurn,
            assetAddress,
            assetAmount,
            goodUntil,
            theSignature,
            extraData
        );

        // Validate digest already used
        _checkAndInvalidateDigest(digest);

        // Revert if oracle prices don't match amount withdrawn
        _verifyWithdrawSingleAssetAmountWithOracles(
            assetAddress,
            assetAmount,
            poolTokenAmountToBurn
        );

        // Reverts if balance is insufficient
        _burn(msg.sender, poolTokenAmountToBurn);

        // Reverts if balance is insufficient
        // syncs done automatically on transfer
        if (sendEthBack) {
            _unwrapAndForwardEth(msg.sender, assetAmount);
        } else {
            transferAsset(assetAddress, msg.sender, assetAmount);
        }

        emit AssetWithdrawn(
            tokenHolder,
            poolTokenAmountToBurn,
            assetAddress,
            assetAmount
        );
    }

    // Don't need a separate "transmit" function here since it's already payable
    function sellEthForToken(
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    )
        external payable
        marketIsRunning
        receivedInTime(uint256(uint32(goodUntil)))
    {
        _sellEthForToken(
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature,
            auxiliaryData
        );
    }

    function _sellEthForToken(
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature memory theSignature,
        bytes memory auxiliaryData
    )
        private
    {
        // Wrap ETH (as balance or value) as input
        safeEthSend(WRAPPER_CONTRACT, inputAmount);
        _swap(
            WRAPPER_CONTRACT,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature,
            auxiliaryData
        );
    }

    function transmitAndDepositSingleAsset(
        address inputToken,
        uint256 inputAmount,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    )
        external
        marketIsRunning
        receivedInTime(goodUntil)
        validLockTime(lockTime)
    {
        IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
        _depositSingleAsset(
            msg.sender,
            inputToken,
            inputAmount,
            lockTime,
            poolTokens,
            goodUntil,
            theSignature,
            extraData
        );
    }

    function transmitAndSellTokenForEth(
        address inputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    )
        external override
        marketIsRunning
        receivedInTime(uint256(uint32(goodUntil)))
    {
        IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
        _sellTokenForEth(
            inputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature,
            auxiliaryData
        );
    }

    // all-in-one transfer from msg.sender to destinationAddress.
    function transmitAndSwap(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    )
        external override
        marketIsRunning
        receivedInTime(uint256(uint32(goodUntil)))
    {
        IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
        _swap(
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress,
            theSignature,
            auxiliaryData
        );
    }

    function _unpackAndCheckInvariantAndPrice(
        address inputToken,
        uint256 inputAmount,
        address outputToken,
        uint256 outputAmount,
        uint256 goodUntil
    )
        private view
    {
        UtilStruct memory s;

        (
            uint256 pX,
            uint256 pY,
            uint256 wX,
            uint256 wY,
            uint256 k
        ) = _unpackGoodUntil(goodUntil);
        s.qX = lastBalances[inputToken];
        s.qY = lastBalances[outputToken];
        s.decimalMultiplierX = 10 ** (18 - tokenDecimals[inputToken]);
        s.decimalMultiplierY = 10 ** (18 - tokenDecimals[outputToken]);

        bool ok = _swapIncreasesInvariant(
            inputAmount * s.decimalMultiplierX,
            pX,
            s.qX * s.decimalMultiplierX,
            wX,
            outputAmount * s.decimalMultiplierY,
            pY,
            s.qY * s.decimalMultiplierY,
            wY,
            k
        );
        if (!ok) revert InvariantCheckFailed();

        // Only validate price if both tokens have an oracle set
        if (
            oracles[inputToken].oracleAddress != address(0) &&
            oracles[outputToken].oracleAddress != address(0)
        ) {
            // Revert if oracle price is out of boundaries
            validatePrice(inputAmount, outputAmount, inputToken, outputToken);
        }
    }

    /**
     * @notice Verifies that a multi-asset deposit matches the expected LP token value.
     * @dev Reverts if the USD value of the LP tokens exceeds the value of the deposited tokens plus tolerance.
     * @param depositAmounts The array of deposited token amounts, indexed by token order.
     * @param poolTokens The amount of LP tokens expected to be minted.
     * @custom:requirements prices must be available for all tokens and use 18 decimals.
     */
    function _verifyDepositAmountsWithOracles(
        uint256[] memory depositAmounts,
        uint256 poolTokens
    )
        private view
    {
        bool oracleVerification = false;
        if (_areAllOraclesSet()) {
            oracleVerification = true;
        }

        uint n = nTokens();
        uint256 depositValue = 0;
        for (uint i = 0; i < n; ++i) {
            if (depositAmounts[i] > 0) {
                depositValue += _verifyAssetDeposit(tokenAt(i), depositAmounts[i], oracleVerification);
            }
        }

        if (oracleVerification) {
            _verifyPoolTokensFairValue(poolTokens, depositValue);
        }
    }

    /**
     * @notice Verifies a single-asset deposit against the expected LP token value.
     * @dev Uses current oracle prices to compute and compare values.
     * @param assetAddress The token being deposited.
     * @param assetAmount The amount of the token to deposit.
     * @param poolTokens The amount of LP tokens expected to be minted.
     */
    function _verifyDepositSingleAssetAmountWithOracles(
        address assetAddress,
        uint256 assetAmount,
        uint256 poolTokens
    )
        private view
    {
        bool oracleVerification = false;
        if (_areAllOraclesSet()) {
            oracleVerification = true;
        }

        uint256 depositValue = _verifyAssetDeposit(assetAddress, assetAmount, oracleVerification);

        if (oracleVerification) {
            _verifyPoolTokensFairValue(poolTokens, depositValue);
        }
    }

    function _verifyPoolTokensFairValue(uint256 poolTokens, uint256 valueToCompare) private view {
        uint256 lpTokenPrice = _getLpTokenPrice(totalSupply());
        uint256 poolTokensValue = (poolTokens * lpTokenPrice) / Constants.ONE_IN_DEFAULT_DECIMALS;

        _revertIfDeviationTooHigh(poolTokensValue, valueToCompare);
    }

    function _verifyAssetDeposit(
        address token,
        uint256 expectedAmount,
        bool oracleVerification
    )
        private view
        returns (uint256 depositValue)
    {
        uint256 delta = _currentDeltaOverLastBalance(token);
        if (delta < expectedAmount) {
            revert InsufficientInput();
        }

        if (oracleVerification) {
            depositValue = _getAssetAmountUsdValue(token, delta);
        }
    }

    /**
     * @notice Verifies a single-asset withdrawal against the value of LP tokens burned.
     * @dev Reverts if the USD value of the withdrawal exceeds LP token value plus tolerance.
     * @param assetAddress The token being withdrawn.
     * @param assetAmount The amount of the token to withdraw.
     * @param poolTokens The amount of LP tokens being burned.
     */
    function _verifyWithdrawSingleAssetAmountWithOracles(
        address assetAddress,
        uint256 assetAmount,
        uint256 poolTokens
    )
        private view
    {
        // skip if we don’t yet have a full set of price oracles
        if (_areAllOraclesSet()) {
            uint256 withdrawValue = _getAssetAmountUsdValue(assetAddress, assetAmount);
            _verifyPoolTokensFairValue(withdrawValue, poolTokens);
        }
    }

    /*
    unpack: internal function to unpack uint256 representation
    Input arguments:
      amountAndAddress: uint256 where first 24 hexchars are a uint96 shortened uint256
                         and last 40 hexchars are an address
    Returns: unpacked amount and address
    */
    function _unpack(
        uint256 amountAndAddress
    )
        private pure
        returns (
            uint256 amount,
            address contractAddress
        )
    {
        // uint256 -> uint160 automatically takes just last 40 hexchars
        contractAddress = address(uint160(amountAndAddress));
        // shift over the 40 hexchars to capture the amount
        amount = amountAndAddress >> 160;
    }

    /*
    packedTransmitAndDepositSingleAsset: deposit a single asset in an efficient way
    Input arguments:
      packedInput: Amount and contract address of asset to deposit
      packedConfig: First 32 hexchars are poolTokens, next 24 are goodUntil, next 6 is lockTime in minutes, final 2 are v
      r, s: Signature values
    */
    function packedTransmitAndDepositSingleAsset(
        uint256 packedInput,
        uint256 packedConfig,
        bytes32 r,
        bytes32 s,
        bytes calldata extraData
    )
        external payable
        marketIsRunning
    {
        uint256 poolTokens = packedConfig >> 128;
        uint256 goodUntil = uint256(uint96(packedConfig >> 32));
        uint256 lockTime = uint256(uint24(packedConfig >> 8));

        // validates message expiration
        if (goodUntil < block.timestamp) {
            revert ExpiredMessage();
        }

        // validates vesting time
        if (lockTime < 1) {
            revert InvalidLockTime();
        }

        Signature memory theSignature;
        uint256 inputAmount;
        address inputToken;
        {
            // scope to avoid stack too deep errors
            (inputAmount, inputToken) = _unpack(packedInput);
            uint8 v = uint8(packedConfig);

            theSignature = Signature(v, r, s);
            delete v;

            if (inputToken == ETH_SIGIL) {
                // Don't need to wrap the ETH here, do it in the deposit function
                inputToken = WRAPPER_CONTRACT;
            } else {
                IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
            }
        }

        _depositSingleAsset(
            msg.sender,
            inputToken,
            inputAmount,
            lockTime,
            poolTokens,
            goodUntil,
            theSignature,
            extraData
        );
    }

    /*
    unpackAndSwap: internal function that performs unpacks a set of calldata-packed inputs and performs a swap
    Input arguments:
      packedInput: input amount and contract
      packedOutput: output amount and contract
      packedGoodUntil: packed good until (for verifier, direct from server)
      impliedOutputPrice: implied price for the output token to verify with the oracle
      auxData: bytes32, identifier. Final 20 bytes are destination address. First 12 bytes are auxData identifier string.
      r, vs: Signature values using EIP 2098 - https://eips.ethereum.org/EIPS/eip-2098
      performTransfer: if tokens should be transferred from msg.sender
    */
    function _unpackAndSwap(
        uint256 packedInput,
        uint256 packedOutput,
        uint256 packedGoodUntil,
        bytes32 auxData,
        bytes32 r,
        bytes32 vs,
        bool performTransfer
    )
        private
    {
        (uint256 inputAmount, address inputContractAddress) = _unpack(packedInput);
        (uint256 outputAmount, address outputContractAddress) = _unpack(packedOutput);
        Signature memory theSignature;

        {
            // Directly from https://eips.ethereum.org/EIPS/eip-2098
            bytes32 s = vs & 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
            uint8 v = 27 + uint8(uint256(vs) >> 255);

            theSignature = Signature(v, r, s);
        }

        if (performTransfer && (inputContractAddress != ETH_SIGIL)) {
            IERC20(inputContractAddress).safeTransferFrom(msg.sender, address(this), inputAmount);
        }

        _performUnpackedSwap(
            inputContractAddress,
            outputContractAddress,
            inputAmount,
            outputAmount,
            packedGoodUntil,
            auxData,
            theSignature
        );
    }

    function _performUnpackedSwap(
        address inputContractAddress,
        address outputContractAddress,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        bytes32 auxData,
        Signature memory theSignature
    )
        private
    {
        address destinationAddress = address(uint160(uint256(auxData)));
        bytes12 prefix = bytes12(auxData);
        bytes memory auxiliaryData = abi.encodePacked(prefix);

        if (inputContractAddress == ETH_SIGIL) {
            _sellEthForToken(
                outputContractAddress,
                inputAmount,
                outputAmount,
                goodUntil,
                destinationAddress,
                theSignature,
                auxiliaryData
            );
        } else if (outputContractAddress == ETH_SIGIL) {
            _sellTokenForEth(
                inputContractAddress,
                inputAmount,
                outputAmount,
                goodUntil,
                destinationAddress,
                theSignature,
                auxiliaryData
            );
        } else {
            _swap(
                inputContractAddress,
                outputContractAddress,
                inputAmount,
                outputAmount,
                goodUntil,
                destinationAddress,
                theSignature,
                auxiliaryData
            );
        }
    }

    // external function to transfer tokens and perform swap from packed calldata
    function packedTransmitAndSwap(
        uint256 packedInput,
        uint256 packedOutput,
        uint256 packedGoodUntil,
        bytes32 auxData,
        bytes32 r,
        bytes32 vs
    )
        external payable
        marketIsRunning
        receivedInTime(uint256(uint32(packedGoodUntil)))
    {
        _unpackAndSwap(
            packedInput,
            packedOutput,
            packedGoodUntil,
            auxData,
            r,
            vs,
            true
        );
    }

    // external function to perform swap from packed calldata
    function packedSwap(
        uint256 packedInput,
        uint256 packedOutput,
        uint256 packedGoodUntil,
        bytes32 auxData,
        bytes32 r,
        bytes32 vs
    )
        external payable
        marketIsRunning
        receivedInTime(uint256(uint32(packedGoodUntil)))
    {
        _unpackAndSwap(
            packedInput,
            packedOutput,
            packedGoodUntil,
            auxData,
            r,
            vs,
            false
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }
}

File 3 of 65 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 4 of 65 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(-x.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(-x.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 5 of 65 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

File 6 of 65 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint128. This is useful when end users want to use uint128 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD21x18 is uint128;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD21x18 global;

File 7 of 65 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoInt256,
    Casting.intoSD1x18,
    Casting.intoSD21x18,
    Casting.intoUD2x18,
    Casting.intoUD21x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Math.abs,
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.log10,
    Math.log2,
    Math.ln,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.uncheckedUnary,
    Helpers.xor
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.or as |,
    Helpers.sub as -,
    Helpers.unary as -,
    Helpers.xor as ^
} for SD59x18 global;

File 8 of 65 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD21x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint128.
error PRBMath_SD21x18_ToUint128_Underflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in UD60x18.
error PRBMath_SD21x18_ToUD60x18_Underflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint256.
error PRBMath_SD21x18_ToUint256_Underflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Overflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Underflow(SD21x18 x);

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ? {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 11 of 65 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x = uMAX_SD1x18
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD1x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(uint64(xUint)));
}

/// @notice Casts a UD60x18 number into SD21x18.
/// @dev Requirements:
/// - x = uMAX_SD21x18
function intoSD21x18(UD60x18 x) pure returns (SD21x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD21x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD21x18_Overflow(x);
    }
    result = SD21x18.wrap(int128(uint128(xUint)));
}

/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x = uMAX_UD2x18
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD2x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(xUint));
}

/// @notice Casts a UD60x18 number into UD21x18.
/// @dev Requirements:
/// - x = uMAX_UD21x18
function intoUD21x18(UD60x18 x) pure returns (UD21x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD21x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD21x18_Overflow(x);
    }
    result = UD21x18.wrap(uint128(xUint));
}

/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x = uMAX_SD59x18
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(uMAX_SD59x18)) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
    }
    result = SD59x18.wrap(int256(xUint));
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x = MAX_UINT128
function intoUint128(UD60x18 x) pure returns (uint128 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT128) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
    }
    result = uint128(xUint);
}

/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x = MAX_UINT40
function intoUint40(UD60x18 x) pure returns (uint40 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT40) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

File 12 of 65 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
    // This wouldn't work if x could be negative.
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 13 of 65 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD21x18 } from "./ValueType.sol";

/// @notice Casts a UD21x18 number into SD59x18.
/// @dev There is no overflow check because UD21x18 ? SD59x18.
function intoSD59x18(UD21x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD21x18.unwrap(x))));
}

/// @notice Casts a UD21x18 number into UD60x18.
/// @dev There is no overflow check because UD21x18 ? UD60x18.
function intoUD60x18(UD21x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD21x18.unwrap(x));
}

/// @notice Casts a UD21x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint128(UD21x18 x) pure returns (uint128 result) {
    result = UD21x18.unwrap(x);
}

/// @notice Casts a UD21x18 number into uint256.
/// @dev There is no overflow check because UD21x18 ? uint256.
function intoUint256(UD21x18 x) pure returns (uint256 result) {
    result = uint256(UD21x18.unwrap(x));
}

/// @notice Casts a UD21x18 number into uint40.
/// @dev Requirements:
/// - x = MAX_UINT40
function intoUint40(UD21x18 x) pure returns (uint40 result) {
    uint128 xUint = UD21x18.unwrap(x);
    if (xUint > uint128(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD21x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud21x18(uint128 x) pure returns (UD21x18 result) {
    result = UD21x18.wrap(x);
}

/// @notice Unwrap a UD21x18 number into uint128.
function unwrap(UD21x18 x) pure returns (uint128 result) {
    result = UD21x18.unwrap(x);
}

/// @notice Wraps a uint128 number into UD21x18.
function wrap(uint128 x) pure returns (UD21x18 result) {
    result = UD21x18.wrap(x);
}

File 14 of 65 : BladeErrors.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;


error InvariantCheckFailed();
error InsufficientInput();
error InvalidFeeSplitTooMuch();
error InvalidFeeSplitTooSoon();
error InvalidLockTime();
error PoolStateDeviation();
error MarketTradeHalted();
error MismatchedArrayLengths();
error UnauthorizedCaller();
error ExistingVestingDeposit();
error UnlockDepositFailed();
error ExpiredMessage();
error EthTransferFailed();
error TokenNotInPool();
error InvalidLPTokenValue();
error TokenDecimalsNotSupported();

File 15 of 65 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: UNLICENSED
// Copyright 2023 Shipyard Software, Inc.
pragma solidity ^0.8.20;

interface WrapperContractInterface {
    function withdraw(uint256 amount) external;
}

File 18 of 65 : BladeTypes.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

struct Signature {
    uint8 v;
    bytes32 r;
    bytes32 s;
}

struct Deposit {
    uint lockedUntil;
    uint256 poolTokenAmount;
}

struct UtilStruct {
    uint256 qX;
    uint256 qY;
    uint256 decimalMultiplierX;
    uint256 decimalMultiplierY;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 20 of 65 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD21x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD21x18 number.
SD21x18 constant E = SD21x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD21x18 number can have.
int128 constant uMAX_SD21x18 = 170141183460469231731_687303715884105727;
SD21x18 constant MAX_SD21x18 = SD21x18.wrap(uMAX_SD21x18);

/// @dev The minimum value an SD21x18 number can have.
int128 constant uMIN_SD21x18 = -170141183460469231731_687303715884105728;
SD21x18 constant MIN_SD21x18 = SD21x18.wrap(uMIN_SD21x18);

/// @dev PI as an SD21x18 number.
SD21x18 constant PI = SD21x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD21x18.
SD21x18 constant UNIT = SD21x18.wrap(1e18);
int128 constant uUNIT = 1e18;

File 21 of 65 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();

/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);

/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);

/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();

/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);

/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);

/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);

/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();

/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);

/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);

/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);

File 22 of 65 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_UD60x18,
    uMAX_WHOLE_UD60x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    unchecked {
        result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x = MAX_WHOLE_UD60x18
///
/// @param x The UD60x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint > uMAX_WHOLE_UD60x18) {
        revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
    }

    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `UNIT - remainder`.
        let delta := sub(uUNIT, remainder)

        // Equivalent to `x + remainder > 0 ? delta : 0`.
        result := add(x, mul(delta, gt(remainder, 0)))
    }
}

/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @return result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x = 133_084258667509499440
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xUint > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        uint256 doubleUnitProduct = xUint * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x < 192e18
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
    if (xUint > uEXP2_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
    }

    // Convert x to the 192.64-bit fixed-point format.
    uint256 x_192x64 = (xUint << 64) / uUNIT;

    // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
    result = wrap(Common.exp2(x_192x64));
}

/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `x - remainder > 0 ? remainder : 0)`.
        result := sub(x, mul(remainder, gt(remainder, 0)))
    }
}

/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @return result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        result := mod(x, uUNIT)
    }
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    if (xUint == 0 || yUint == 0) {
        return ZERO;
    }

    unchecked {
        // Checking for overflow this way is faster than letting Solidity do it.
        uint256 xyUint = xUint * yUint;
        if (xyUint / xUint != yUint) {
            revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        result = wrap(Common.sqrt(xyUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(uUNIT_SQUARED / x.unwrap());
    }
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
        // {log2} can return is ~196_205294292027477728.
        result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
    }
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
        default { result := uMAX_UD60x18 }
    }

    if (result.unwrap() == uMAX_UD60x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x = UNIT
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    unchecked {
        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(xUint / uUNIT);

        // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
        // n is at most 255 and UNIT is 1e18.
        uint256 resultUint = n * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        uint256 y = xUint >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultUint);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        uint256 DOUBLE_UNIT = 2e18;
        for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultUint += delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        result = wrap(resultUint);
    }
}

/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}

/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xUint == 0) {
        return yUint == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xUint == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yUint == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yUint == uUNIT) {
        return x;
    }

    // If x is > UNIT, use the standard formula.
    if (xUint > uUNIT) {
        result = exp2(mul(log2(x), y));
    }
    // Conversely, if x < UNIT, use the equivalent formula.
    else {
        UD60x18 i = wrap(uUNIT_SQUARED / xUint);
        UD60x18 w = exp2(mul(log2(i), y));
        result = wrap(uUNIT_SQUARED / w.unwrap());
    }
}

/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
    // Calculate the first iteration of the loop in advance.
    uint256 xUint = x.unwrap();
    uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    for (y >>= 1; y > 0; y >>= 1) {
        xUint = Common.mulDiv18(xUint, xUint);

        // Equivalent to `y % 2 == 1`.
        if (y & 1 > 0) {
            resultUint = Common.mulDiv18(resultUint, xUint);
        }
    }
    result = wrap(resultUint);
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x = MAX_UD60x18 / UNIT
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    unchecked {
        if (xUint > uMAX_UD60x18 / uUNIT) {
            revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
        }
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
        // In this case, the two numbers are both the square root.
        result = wrap(Common.sqrt(xUint * uUNIT));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";

import "../base/BladeErrors.sol";
import { Signature, Deposit } from "../types/BladeTypes.sol";
import {Constants} from "../base/Constants.sol";
import { IBladeExchange } from "../interfaces/IBladeExchange.sol";
import { BladeSignatureLib } from "../libraries/BladeSignatureLib.sol";


abstract contract BladeCommonExchange is IBladeExchange, ERC20, ReentrancyGuard, Ownable {
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.AddressSet;
    using SafeCast for uint256;
    using SafeCast for int256;

    uint256 constant ONE_IN_TEN_DECIMALS = 1e10;
    uint256 constant ONE_IN_PRICE_DECIMALS = 1e8;
    uint256 constant ONE_BASIS_POINT_IN_TEN_DECIMALS = 1e6;
    address constant ETH_SIGIL = address(0);

    uint256 constant MAXIMUM_FEE_WITHDRAWAL_IN_TEN_DECIMALS = ONE_IN_TEN_DECIMALS / 20;
    uint256 constant MINIMUM_DURATION_BETWEEN_FEE_WITHDRAWAL = 7 days;

    // Allow for inputs up to 0.5% more than quoted values to have scaled output.
    // Inputs higher than this value just get 0.5% more.
    uint256 constant MAX_ALLOWED_OVER_TEN_DECIMALS = ONE_IN_TEN_DECIMALS+50*ONE_BASIS_POINT_IN_TEN_DECIMALS;

    // LP token price deviation in basis points
    uint8 constant PRICE_TOLERANCE_IN_BPS = 10;
    
    // Constant values for EIP-712 signing
    string constant VERSION = "2.0.0";
    string constant NAME = "Blade";
    bytes32 immutable DOMAIN_SEPARATOR;

    // Signer is passed in on construction, hence "immutable"
    address immutable public DESIGNATED_SIGNER;

    address immutable public WRAPPER_CONTRACT;

    //uint256 public lastDaoWithdrawal;
    uint256 public lastFeeWithdrawal;

    // Halt market
    address public triageRole;
    bool private _marketHalted;

    // Assets
    // lastBalances: used for "transmit then swap then sync" modality
    // assetSet is a set of keys that have lastBalances
    mapping(address => uint256) public lastBalances;
    mapping(address => uint8) tokenDecimals;
    EnumerableSet.AddressSet assetSet;

    // Allows lookup
    mapping(address => Deposit) public vestingDeposits;

    modifier marketIsRunning {
        _requireMarketIsRunning();
        _;
    }

    modifier OnlyTriage() {
        _requireOnlyTriage();
        _;
    }

    modifier validLockTime(uint256 lockTime) {
        if (lockTime < 1) {
            revert InvalidLockTime();
        }
        _;
    }

    modifier receivedInTime(uint256 goodUntil) {
        if (goodUntil < block.timestamp) {
            revert ExpiredMessage();
        }
        _;
    }

    modifier onlyTokenHolder(address tokenHolder) {
        if (msg.sender != tokenHolder) {
            revert UnauthorizedCaller();
        }
        _;
    }

    // Take in the designated signer address and the token list
    constructor(
        address theSigner,
        address theWrapper,
        address[] memory tokens,
        address initialOwner
    )
        ERC20(tokenName(), tokenSymbol())
        Ownable(initialOwner)
    {
        DESIGNATED_SIGNER = theSigner;
        uint i;
        uint n = tokens.length;
        while(i < n) {
            address token = tokens[i];

            assetSet.add(token);

            // Cache token decimals
            uint8 decimals = IERC20Metadata(token).decimals();

            if (decimals > 18) {
                revert TokenDecimalsNotSupported();
            }

            tokenDecimals[token] = decimals;

            i++;
        }
        DOMAIN_SEPARATOR = BladeSignatureLib.createDomainSeparator(NAME, VERSION, address(this));
        WRAPPER_CONTRACT = theWrapper;
    }

    // Allows the receipt of ETH directly
    receive() external payable {}

    function _verifyDigestSignature(
        bytes32 digest,
        Signature memory sig
    ) internal view {
        BladeSignatureLib.verifyDigestSignature(digest, sig, DESIGNATED_SIGNER);
    }

    function deposit(
        address depositor,
        uint256[] calldata depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    ) public payable virtual;

    /*
    Triage emergency functionality.

    owner can set an address that has the ability to halt trade.
    Only proportional withdrawals are allowed if trade is halted.
    */

    function setTriageRole(address newTriage) external onlyOwner {
        triageRole = newTriage;
        emit TriageAddressChanged(newTriage);
    }

    function isTradeHalted() external view virtual returns (bool) {
        return _marketHalted;
    }

    function stopTrade() external OnlyTriage {
        _marketHalted = true;
        emit MarketHalted(msg.sender);
    }

    function resumeTrade() external OnlyTriage {
        _marketHalted = false;
        emit MarketResumed(msg.sender);
    }

    function _requireOnlyTriage() private view {
        if (msg.sender != triageRole) {
            revert UnauthorizedCaller();
        }
    }

    function _requireMarketIsRunning() private view {
        if (_marketHalted) {
            revert MarketTradeHalted();
        }
    }

    function tokenName() internal pure virtual returns (string memory) {
        return "Blade LP Token";
    }

    function tokenSymbol() internal pure virtual returns (string memory) {
        return "BladeLP";
    }

    function safeEthSend(address recipient, uint256 howMuch) internal {
        (bool success, ) = payable(recipient).call{value: howMuch}("");
        if (!success) revert EthTransferFailed();
    }

    /* TOKEN AND ASSET FUNCTIONS */
    function nTokens() public view returns (uint) {
        return assetSet.length();
    }

    function tokenAt(uint i) public view returns (address) {
        return assetSet.at(i);
    }

    function isToken(address token) public view returns (bool) {
        return assetSet.contains(token);
    }

    function _sync(address token) internal virtual;

    // Can be overridden
    function getLastBalance(address token) public view virtual returns (uint256) {
        return lastBalances[token];
    }

    function getTokenBalance(address token) internal view returns (uint256) {
        return IERC20(token).balanceOf(address(this));
    }

    function allTokensBalance() external view returns (uint256[] memory, address[] memory, uint256) {
        uint n = nTokens();
        uint256[] memory balances = new uint256[](n);
        address[] memory tokens = new address[](n);
        for (uint i = 0; i < n; i++) {
            address token = tokenAt(i);
            balances[i] = getLastBalance(token);
            tokens[i] = token;
        }

        return (balances, tokens, totalSupply());
    }

    function allTokensStateBalance() external view returns (uint256[] memory, address[] memory, uint256) {
        uint n = nTokens();
        uint256[] memory balances = new uint256[](n);
        address[] memory tokens = new address[](n);
        for (uint i = 0; i < n; i++) {
            address token = tokenAt(i);
            balances[i] = getTokenBalance(token);
            tokens[i] = token;
        }

        return (balances, tokens, totalSupply());
    }

    function transmitAndDeposit(
        uint256[] calldata depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    )
        external
        marketIsRunning
    {
        uint i = 0;
        uint n = depositAmounts.length;
        while(i < n) {
            uint256 transferAmount = depositAmounts[i];
            if(transferAmount > 0){
                IERC20(tokenAt(i)).safeTransferFrom(msg.sender, address(this), transferAmount);
            }
            i++;
        }
        deposit(msg.sender, depositAmounts, lockTime, poolTokens, goodUntil, theSignature, extraData);
    }

    /**
    * @notice Verifies that the on-chain LP token price is within acceptable bounds of the provided reference price.
    * @dev Uses external token prices (all with 18 decimals) to recompute the LP token price on-chain.
    *      If the deviation exceeds the predefined tolerance (in BPS), the transaction reverts.
    *      This protects against large valuation mismatches.
    * @param lpTokenPrice The expected LP token price, computed off-chain and provided as reference. Must use 18 decimals.
    * @param prices External token prices used to calculate the current on-chain LP token price. Each must use 18 decimals.
    * @custom:conditions Skips verification if total LP token supply is zero.
    */
    function _verifyLpTokenStatePool(
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        private view
    {
        uint256 lpTotalSupply = totalSupply();
        if (lpTotalSupply == 0) {
            return; // No validation needed on first deposit
        }

        if (lpTokenPrice == 0) {
            revert InvalidLPTokenValue();
        }

        uint256 n = nTokens();
        uint256 totalValue;
        for (uint i = 0; i < n; ++i) {
            address token = tokenAt(i);
            uint256 decimalMultiplier = 10 ** (18 - tokenDecimals[token]);
            uint256 tokenBalance = getTokenBalance(token) * decimalMultiplier;
            uint256 tokenValue = (tokenBalance * prices[i]) / Constants.ONE_IN_DEFAULT_DECIMALS;
            totalValue += tokenValue;
        }
        uint256 onChainLpTokenPrice = (totalValue * Constants.ONE_IN_DEFAULT_DECIMALS) / lpTotalSupply;

        // Nothing to do if they match exactly
        if (onChainLpTokenPrice == lpTokenPrice) {
            return;
        }

        // Calculate how much deviation is allowed (referenceValue * toleranceBps / 10 000)
        uint256 maxAllowedDeviation = (lpTokenPrice * Constants.PRICE_TOLERANCE_IN_BPS) / Constants.ONE_IN_BASIS_POINTS;

        // Compute the absolute difference between actual and reference
        uint256 absoluteDifference = onChainLpTokenPrice > lpTokenPrice
            ? onChainLpTokenPrice - lpTokenPrice
            : lpTokenPrice - onChainLpTokenPrice;

        // Revert if the difference exceeds the allowed tolerance
        if (absoluteDifference > maxAllowedDeviation) {
            revert PoolStateDeviation();
        }
    }

    // nonReentrant asset transfer
    function transferAsset(address token, address recipient, uint256 amount) internal nonReentrant {
        IERC20(token).safeTransfer(recipient, amount);
        // We never want to transfer an asset without sync'ing
        _sync(token);
    }

    function calculateFairOutput(uint256 statedInput, uint256 actualInput, uint256 statedOutput) internal pure returns (uint256) {
        if (actualInput == statedInput) {
            return statedOutput;
        } else {
            uint256 theFraction = (ONE_IN_TEN_DECIMALS*actualInput)/statedInput;
            if (theFraction >= MAX_ALLOWED_OVER_TEN_DECIMALS) {
                return (MAX_ALLOWED_OVER_TEN_DECIMALS*statedOutput)/ONE_IN_TEN_DECIMALS;
            } else {
                return (theFraction*statedOutput)/ONE_IN_TEN_DECIMALS;
            }
        }
    }

    /* DEPOSIT FUNCTIONALITY */
    function canUnlockDeposit(address depositor) public view returns (bool) {
        Deposit storage myDeposit = vestingDeposits[depositor];
        return (myDeposit.poolTokenAmount > 0) && (myDeposit.lockedUntil <= block.timestamp);
    }

    function unlockDeposit() external returns (uint256 poolTokens) {
        if (!canUnlockDeposit(msg.sender)) {
            revert UnlockDepositFailed();
        }

        poolTokens = vestingDeposits[msg.sender].poolTokenAmount;
        delete vestingDeposits[msg.sender];

        _transfer(address(this), msg.sender, poolTokens);
    }

    // Mints tokens to this contract to hold for vesting
    function _createVestingDeposit(address depositor, uint256 lockTime, uint256 poolTokens) private {
        if (lockTime < 1) {
            revert InvalidLockTime();
        }

        if (vestingDeposits[depositor].poolTokenAmount != 0) {
            revert ExistingVestingDeposit();
        }

        Deposit memory myDeposit = Deposit({
            lockedUntil: block.timestamp + (lockTime * 1 minutes),
            poolTokenAmount: poolTokens
        });
        vestingDeposits[depositor] = myDeposit;
        _mint(address(this), poolTokens);
    }

    function takeFees(
        uint256 entitledFeesInDollars,
        uint256 averagePoolBalanceInDollars
    )
        external onlyOwner
    {
        // calculate fraction in base ten
        uint256 theFraction = (ONE_IN_TEN_DECIMALS * entitledFeesInDollars) / averagePoolBalanceInDollars;

        // Validates is less thant max allowed
        if(theFraction > MAXIMUM_FEE_WITHDRAWAL_IN_TEN_DECIMALS) {
            revert InvalidFeeSplitTooMuch();
        }

        // Validates withdrawal time
        if(block.timestamp < lastFeeWithdrawal + MINIMUM_DURATION_BETWEEN_FEE_WITHDRAWAL) {
            revert InvalidFeeSplitTooSoon();
        }

        lastFeeWithdrawal = block.timestamp;

        // Calculates tokens to mint
        uint256 tokensToMint = (theFraction * totalSupply()) / ONE_IN_TEN_DECIMALS;
        _mint(msg.sender, tokensToMint);

        emit FeesTaken(entitledFeesInDollars, averagePoolBalanceInDollars, tokensToMint);
    }

    function _decodeAndValidatePrices(bytes memory extraData)
        private view
        returns (uint256 lpTokenPrice, uint256[] memory prices)
    {
        // Decode extra data
        (lpTokenPrice, prices) = abi.decode(extraData, (uint256, uint256[]));

        uint256 n = nTokens();
        if (prices.length != n) {
            revert MismatchedArrayLengths();
        }

    }

    function _depositChecks(
        address depositor,
        uint256[] memory depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature memory sig,
        bytes memory extraData
    )
        internal view
        returns (bytes32 digest)
    {
        uint n = nTokens();
        if (n != depositAmounts.length) {
            revert MismatchedArrayLengths();
        }

        // Decode extra data
        (uint256 lpTokenPrice, uint256[] memory prices) = _decodeAndValidatePrices(extraData);

        // Check the signature
        digest = BladeSignatureLib.createDepositDigest(
            DOMAIN_SEPARATOR,
            depositor,
            depositAmounts,
            lockTime,
            poolTokens,
            goodUntil,
            lpTokenPrice,
            prices
        );

        // Verify signature
        _verifyDigestSignature(digest, sig);

        // Revert if the pool state has changed
        _verifyLpTokenStatePool(lpTokenPrice, prices);
    }

    function _singleDepositChecks(
        address depositor,
        address inputToken,
        uint256 inputAmount,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature memory sig,
        bytes memory extraData
    )
        internal view
        returns (bytes32 digest)
    {
        // Decode extra data
        (uint256 lpTokenPrice, uint256[] memory prices) = _decodeAndValidatePrices(extraData);

        // Check the signature
        digest = BladeSignatureLib.createSingleDepositDigest(
            DOMAIN_SEPARATOR,
            depositor,
            inputToken,
            inputAmount,
            lockTime,
            poolTokens,
            goodUntil,
            lpTokenPrice,
            prices
        );

        // Verify signature
        _verifyDigestSignature(digest, sig);

        // Revert if the pool state has changed
        _verifyLpTokenStatePool(lpTokenPrice, prices);
    }

    function _singleWithdrawChecks(
        address tokenHolder,
        uint256 poolTokenAmountToBurn,
        address assetAddress,
        uint256 assetAmount,
        uint256 goodUntil,
        Signature calldata sig,
        bytes calldata extraData
    )
        internal view
        returns (bytes32 digest)
    {
        // Decode extra data
        (uint256 lpTokenPrice, uint256[] memory prices) = _decodeAndValidatePrices(extraData);

        // Check the signature
        digest = BladeSignatureLib.createWithdrawalDigest(
            DOMAIN_SEPARATOR,
            tokenHolder,
            poolTokenAmountToBurn,
            assetAddress,
            assetAmount,
            goodUntil,
            lpTokenPrice,
            prices
        );

        // Revert if it's signed by the wrong address
        // Revert if it's a replay, or if the timestamp is too late
        _verifyDigestSignature(digest, sig);

        // Revert if the pool state has changed
        _verifyLpTokenStatePool(lpTokenPrice, prices);
    }

    function _finalizeDeposit(
        address depositor,
        uint256 lockTime,
        uint256 poolTokens
    )
    internal
    {
        _createVestingDeposit(depositor, lockTime, poolTokens);
        emit Deposited(depositor, poolTokens, lockTime);
    }

    /* WITHDRAWAL FUNCTIONALITY */
    function _proportionalWithdrawal(uint256 myFraction) private {
        uint256 toTransfer;

        uint i;
        uint n = nTokens();
        while(i < n) {
            address theToken = tokenAt(i);
            toTransfer = (myFraction * getLastBalance(theToken)) / ONE_IN_TEN_DECIMALS;
            // syncs done automatically on transfer
            transferAsset(theToken, msg.sender, toTransfer);
            i++;
        }
    }

    function burnToWithdraw(uint256 amount) external {
        // Capture the fraction first, before burning
        uint256 theFractionBaseTen = (ONE_IN_TEN_DECIMALS * amount) / totalSupply();

        // Reverts if balance is insufficient
        _burn(msg.sender, amount);

        _proportionalWithdrawal(theFractionBaseTen);
        emit Withdrawn(msg.sender, amount, theFractionBaseTen);
    }

    function _verifySwapSignature(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature memory sig
    )
        internal view
        returns (bytes32 digest)
    {
        digest = BladeSignatureLib.createSwapDigest(
            DOMAIN_SEPARATOR,
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress
        );

        _verifyDigestSignature(digest, sig);
    }

    function _wrapMsgValue() internal {
        if (msg.value > 0) {
            safeEthSend(WRAPPER_CONTRACT, msg.value);
        }
    }
}

File 25 of 65 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD2x18 global;

File 26 of 65 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";

/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because UD2x18 ? SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}

/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because UD2x18 ? UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because UD2x18 ? uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
    result = uint128(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because UD2x18 ? uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
    result = uint256(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x = MAX_UINT40
function intoUint40(UD2x18 x) pure returns (uint40 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
    result = UD2x18.unwrap(x);
}

/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 30 of 65 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD21x18.
error PRBMath_UD60x18_IntoSD21x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD21x18.
error PRBMath_UD60x18_IntoUD21x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);

/// @notice Thrown when taking the logarithm of a number less than UNIT.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);

/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 32 of 65 : Constants.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

library Constants {
    uint256 constant ONE_IN_BASIS_POINTS = 10000;
    uint8 constant PRICE_TOLERANCE_IN_BPS = 10;
    uint256 constant ONE_IN_DEFAULT_DECIMALS = 1e18;
}

File 33 of 65 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int128. This is useful when end users want to use int128 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD21x18 is int128;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for SD21x18 global;

// SPDX-License-Identifier: UNLICENSED
// Copyright 2024 Shipyard Software, Inc.
pragma solidity ^0.8.20;

import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";

// solhint-disable-next-line interface-starts-with-i
interface AggregatorV3Interface {
    function decimals() external view returns (uint8);
    function latestRoundData()
    external
    view
    returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}

library SafeAggregatorInterface {
    using SafeCast for int256;

    error OracleStalePrice();

    // Returns the latest price from the oracle as a uint256, reverting if invalid or older than minimumTime
    function safeUnsignedLatest(address oracle, uint256 minimumTime) internal view returns (uint256) {
        (uint80 roundId, int256 answer, , uint256 updatedAt, uint80 answeredInRound) = AggregatorV3Interface(oracle).latestRoundData();
        if (roundId != answeredInRound || updatedAt + minimumTime <= block.timestamp) {
            revert OracleStalePrice();
        }

        return answer.toUint256();
    }
}

File 35 of 65 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoSD21x18,
    Casting.intoSD59x18,
    Casting.intoUD2x18,
    Casting.intoUD21x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.ln,
    Math.log10,
    Math.log2,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.xor
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.or as |,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.sub as -,
    Helpers.xor as ^
} for UD60x18 global;

File 36 of 65 : SD59x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

¦¦¦¦¦¦+ ¦¦¦¦¦¦+ ¦¦¦¦¦¦+ ¦¦¦+   ¦¦¦+ ¦¦¦¦¦+ ¦¦¦¦¦¦¦¦+¦¦+  ¦¦+
¦¦+--¦¦+¦¦+--¦¦+¦¦+--¦¦+¦¦¦¦+ ¦¦¦¦¦¦¦+--¦¦++--¦¦+--+¦¦¦  ¦¦¦
¦¦¦¦¦¦++¦¦¦¦¦¦++¦¦¦¦¦¦++¦¦+¦¦¦¦+¦¦¦¦¦¦¦¦¦¦¦   ¦¦¦   ¦¦¦¦¦¦¦¦
¦¦+---+ ¦¦+--¦¦+¦¦+--¦¦+¦¦¦+¦¦++¦¦¦¦¦+--¦¦¦   ¦¦¦   ¦¦+--¦¦¦
¦¦¦     ¦¦¦  ¦¦¦¦¦¦¦¦¦++¦¦¦ +-+ ¦¦¦¦¦¦  ¦¦¦   ¦¦¦   ¦¦¦  ¦¦¦
+-+     +-+  +-++-----+ +-+     +-++-+  +-+   +-+   +-+  +-+

¦¦¦¦¦¦¦+¦¦¦¦¦¦+ ¦¦¦¦¦¦¦+ ¦¦¦¦¦+ ¦¦+  ¦¦+ ¦¦+ ¦¦¦¦¦+
¦¦+----+¦¦+--¦¦+¦¦+----+¦¦+--¦¦++¦¦+¦¦++¦¦¦¦¦¦+--¦¦+
¦¦¦¦¦¦¦+¦¦¦  ¦¦¦¦¦¦¦¦¦¦++¦¦¦¦¦¦¦ +¦¦¦++ +¦¦¦+¦¦¦¦¦++
+----¦¦¦¦¦¦  ¦¦¦+----¦¦¦ +---¦¦¦ ¦¦+¦¦+  ¦¦¦¦¦+--¦¦+
¦¦¦¦¦¦¦¦¦¦¦¦¦¦++¦¦¦¦¦¦¦¦ ¦¦¦¦¦++¦¦++ ¦¦+ ¦¦¦+¦¦¦¦¦++
+------++-----+ +------+ +----+ +-+  +-+ +-+ +----+

*/

import "./sd59x18/Casting.sol";
import "./sd59x18/Constants.sol";
import "./sd59x18/Conversions.sol";
import "./sd59x18/Errors.sol";
import "./sd59x18/Helpers.sol";
import "./sd59x18/Math.sol";
import "./sd59x18/ValueType.sol";

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

import {Signature} from "../types/BladeTypes.sol";

library BladeSignatureLib {
    error SignatureValidation();

    bytes32 internal constant EIP712DOMAIN_TYPEHASH =
        keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );

    bytes32 internal constant OFFERSTRUCT_TYPEHASH =
        keccak256(
            abi.encodePacked(
                "OfferStruct(address input_token,address output_token,uint256 input_amount,uint256 output_amount,uint256 good_until,address destination_address)"
            )
        );

    bytes32 internal constant DEPOSITSTRUCT_TYPEHASH =
        keccak256(
            abi.encodePacked(
                "DepositStruct(address depositor,uint256[] deposit_amounts,uint256 lock_time,uint256 pool_tokens,uint256 good_until,uint256 lp_token_price,uint256[] prices)"
            )
        );

    bytes32 internal constant SINGLEDEPOSITSTRUCT_TYPEHASH =
        keccak256(
            abi.encodePacked(
                "SingleDepositStruct(address depositor,address token,uint256 amount,uint256 lock_time,uint256 pool_tokens,uint256 good_until,uint256 lp_token_price,uint256[] prices)"
            )
        );

    bytes32 internal constant WITHDRAWALSTRUCT_TYPEHASH =
        keccak256(
            abi.encodePacked(
                "WithdrawalStruct(address token_holder,uint256 pool_token_amount_to_burn,address asset_address,uint256 asset_amount,uint256 good_until,uint256 lp_token_price,uint256[] prices)"
            )
        );

    function createDomainSeparator(
        string memory name,
        string memory version,
        address theSigner
    )
        internal view
        returns (bytes32)
    {
        return
            keccak256(
                abi.encode(
                    EIP712DOMAIN_TYPEHASH,
                    keccak256(abi.encodePacked(name)),
                    keccak256(abi.encodePacked(version)),
                    uint256(block.chainid),
                    theSigner
                )
            );
    }

    function hashInputOffer(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress
    )
        internal pure
        returns (bytes32)
    {
        return
            keccak256(
                abi.encode(
                    OFFERSTRUCT_TYPEHASH,
                    inputToken,
                    outputToken,
                    inputAmount,
                    outputAmount,
                    goodUntil,
                    destinationAddress
                )
            );
    }

    function hashDeposit(
        address depositor,
        uint256[] memory depositAmounts,
        uint256 minutesLocked,
        uint256 poolTokens,
        uint256 goodUntil,
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        internal pure
        returns (bytes32)
    {
        bytes32 depositAmountsHash = keccak256(
            abi.encodePacked(depositAmounts)
        );
        bytes32 pricesHash = keccak256(abi.encodePacked(prices));
        return
            keccak256(
                abi.encode(
                    DEPOSITSTRUCT_TYPEHASH,
                    depositor,
                    depositAmountsHash,
                    minutesLocked,
                    poolTokens,
                    goodUntil,
                    lpTokenPrice,
                    pricesHash
                )
            );
    }

    function hashSingleDeposit(
        address depositor,
        address inputToken,
        uint256 inputAmount,
        uint256 minutesLocked,
        uint256 poolTokens,
        uint256 goodUntil,
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        internal pure
        returns (bytes32)
    {
        bytes32 pricesHash = keccak256(abi.encodePacked(prices));
        return
            keccak256(
                abi.encode(
                    SINGLEDEPOSITSTRUCT_TYPEHASH,
                    depositor,
                    inputToken,
                    inputAmount,
                    minutesLocked,
                    poolTokens,
                    goodUntil,
                    lpTokenPrice,
                    pricesHash
                )
            );
    }

    function hashWithdrawal(
        address tokenHolder,
        uint256 poolTokenAmountToBurn,
        address assetAddress,
        uint256 assetAmount,
        uint256 goodUntil,
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        internal pure
        returns (bytes32)
    {
        bytes32 pricesHash = keccak256(abi.encodePacked(prices));
        return
            keccak256(
                abi.encode(
                    WITHDRAWALSTRUCT_TYPEHASH,
                    tokenHolder,
                    poolTokenAmountToBurn,
                    assetAddress,
                    assetAmount,
                    goodUntil,
                    lpTokenPrice,
                    pricesHash
                )
            );
    }

    function createSwapDigest(
        bytes32 domainSeparator,
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress
    )
        internal pure
        returns (bytes32 digest)
    {
        bytes32 hashedInput = hashInputOffer(
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress
        );
        digest = MessageHashUtils.toTypedDataHash(domainSeparator, hashedInput);
    }

    function createDepositDigest(
        bytes32 domainSeparator,
        address depositor,
        uint256[] memory depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        internal pure
        returns (bytes32 depositDigest)
    {
        bytes32 hashedInput = hashDeposit(
            depositor,
            depositAmounts,
            lockTime,
            poolTokens,
            goodUntil,
            lpTokenPrice,
            prices
        );
        depositDigest = MessageHashUtils.toTypedDataHash(
            domainSeparator,
            hashedInput
        );
    }

    function createSingleDepositDigest(
        bytes32 domainSeparator,
        address depositor,
        address inputToken,
        uint256 inputAmount,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        internal pure
        returns (bytes32 depositDigest)
    {
        bytes32 hashedInput = hashSingleDeposit(
            depositor,
            inputToken,
            inputAmount,
            lockTime,
            poolTokens,
            goodUntil,
            lpTokenPrice,
            prices
        );
        depositDigest = MessageHashUtils.toTypedDataHash(
            domainSeparator,
            hashedInput
        );
    }

    function createWithdrawalDigest(
        bytes32 domainSeparator,
        address tokenHolder,
        uint256 poolTokenAmountToBurn,
        address assetAddress,
        uint256 assetAmount,
        uint256 goodUntil,
        uint256 lpTokenPrice,
        uint256[] memory prices
    )
        internal pure
        returns (bytes32 withdrawalDigest)
    {
        bytes32 hashedInput = hashWithdrawal(
            tokenHolder,
            poolTokenAmountToBurn,
            assetAddress,
            assetAmount,
            goodUntil,
            lpTokenPrice,
            prices
        );
        withdrawalDigest = MessageHashUtils.toTypedDataHash(
            domainSeparator,
            hashedInput
        );
    }

    function verifyDigestSignature(
        bytes32 digest,
        Signature memory sig,
        address expectedSigner
    )
        internal view
    {
        address signer = ECDSA.recover(digest, sig.v, sig.r, sig.s);

        if (signer != expectedSigner) {
            // Check for signing with embedded tx.origin
            signer = ECDSA.recover(
                keccak256(abi.encodePacked(digest, tx.origin)),
                sig.v,
                sig.r,
                sig.s
            );
            if (signer != expectedSigner) {
                revert SignatureValidation();
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

File 39 of 65 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);

/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);

/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);

/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);

/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);

/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);

File 40 of 65 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD21x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD21x18 number that doesn't fit in uint40.
error PRBMath_UD21x18_IntoUint40_Overflow(UD21x18 x);

File 41 of 65 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The maximum value a uint64 number can have.
uint64 constant MAX_UINT64 = type(uint64).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import { Signature } from "../types/BladeTypes.sol";


/// @title Blade Exchange Interface
/// @notice Shared interface for all Blade exchange implementations
interface IBladeExchange {
    event Swapped(
        address indexed inAsset,
        address indexed outAsset,
        address indexed recipient,
        uint256 inAmount,
        uint256 outAmount,
        bytes auxiliaryData
    );

    event Deposited(
        address indexed depositor,
        uint256 poolTokens,
        uint256 lockTime
    );

    event Withdrawn(
        address indexed withdrawer,
        uint256 poolTokens,
        uint256 fractionOfPool
    );

    event AssetWithdrawn(
        address indexed withdrawer,
        uint256 poolTokens,    
        address indexed assetAddress,
        uint256 assetAmount
    );

    event FeesTaken(
        uint256 entitledFeesInDollars,
        uint256 averagePoolBalanceInDollars,
        uint256 tokensTransferred
    );

    event TriageAddressChanged(address indexed newAddress);
    event MarketHalted(address indexed by);
    event MarketResumed(address indexed by);

    function WRAPPER_CONTRACT() external view returns (address);
    function tokenAt(uint index) external view returns (address);
    function nTokens() external view returns (uint);
    function isToken(address token) external view returns (bool);
    function burnToWithdraw(uint256 amount) external;

    function sellEthForToken(
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    ) external payable;

    function sellTokenForEth(
        address inputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    ) external;

    function transmitAndSellTokenForEth(
        address inputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    ) external;

    function transmitAndSwap(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    ) external;

    function swap(
        address inputToken,
        address outputToken,
        uint256 inputAmount,
        uint256 outputAmount,
        uint256 goodUntil,
        address destinationAddress,
        Signature calldata theSignature,
        bytes calldata auxiliaryData
    ) external;

    function transmitAndDepositSingleAsset(
        address inputToken,
        uint256 inputAmount,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    ) external;

    function deposit(
        address depositor,
        uint256[] calldata depositAmounts,
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    ) external payable;

    function depositSingleAsset(
        address depositor,
        address inputToken,
        uint256 inputAmount, 
        uint256 lockTime,
        uint256 poolTokens,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    ) external payable;

    function withdrawSingleAsset(
        address tokenHolder,
        uint256 poolTokenAmountToBurn,
        address assetAddress,
        uint256 assetAmount,
        uint256 goodUntil,
        Signature calldata theSignature,
        bytes calldata extraData
    ) external;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";

import "../base/BladeErrors.sol";
import {Constants} from "../base/Constants.sol";
import {UtilStruct} from "../types/BladeTypes.sol";
import {SafeAggregatorInterface, AggregatorV3Interface} from "../libraries/SafeAggregatorInterface.sol";


abstract contract OracleManager is Ownable {
    using SafeERC20 for IERC20;
    using SafeCast for uint256;
    using SafeCast for int256;

    struct OracleInfo {
        address oracleAddress;
        uint256 minTimeTolerance;
        uint8 decimals;
    }

    address public sequencerUptimeFeed;
    uint256 private constant GRACE_PERIOD_TIME = 3600;
    mapping(address => OracleInfo) oracles;
    uint8 constant ORACLE_TOLERANCE_IN_BPS = 200; // 2% tolerance in basis points;
    uint8 constant LP_VALUE_TOLERANCE_IN_BPS = 20; // 0.2 %;

    event OracleAdded(
        address indexed token,
        address oracleAddress,
        uint256 minTimeTolerance
    );
    event OracleRemoved(address indexed token);
    event SequencerUptimeFeedAdded(
        address sequencerUptimeFeed
    );

    error OracleSwapDeviation();
    error OracleValueDeviation();
    error OracleNotSet();
    error InvalidOracle();
    error InvalidSequencerFeed();
    error SequencerDown();
    error GracePeriodNotOver();

    constructor(
        address[] memory tokens,
        address[] memory _oracles,
        uint256[] memory minTimeTolerances
    )
    {
        if (_oracles.length > 0) {
            if (
                tokens.length != _oracles.length ||
                tokens.length != minTimeTolerances.length
            ) {
                revert MismatchedArrayLengths();
            }

            for (uint i = 0; i < tokens.length; i++) {
                oracles[tokens[i]] = OracleInfo({
                    oracleAddress: _oracles[i],
                    minTimeTolerance: minTimeTolerances[i],
                    decimals: AggregatorV3Interface(_oracles[i]).decimals()
                });
            }
        }
    }

    function _isToken(address token) internal view virtual returns (bool);
    function _nTokens() internal view virtual returns (uint);
    function _tokenAt(uint index) internal view virtual returns (address);
    function _getLastBalance(address token) internal view virtual returns (uint256);
    function _getTokenDecimals(address token) internal view virtual returns (uint8);

    /// @notice Set or update the Chainlink sequencer uptime feed
    function setSequencerUptimeFeed(
        address feedAddress
    )
        external
        onlyOwner
    {
        _validateFeedAddress(feedAddress);
        sequencerUptimeFeed = feedAddress;

        emit SequencerUptimeFeedAdded(feedAddress);
    }

    /// @notice Validates that the feed implements latestRoundData
    function _validateFeedAddress(address feed) internal view {
        if (feed == address(0)) revert InvalidSequencerFeed();

        // Try-catch to ensure interface call does not revert
        try AggregatorV3Interface(feed).latestRoundData() returns (
            uint80, int256, uint256, uint256, uint80
        ) {
            // pass
        } catch {
            revert InvalidSequencerFeed();
        }
    }

    /// @notice Validate that the sequencer is up and grace period has passed
    function _enforceSequencerIsUp() internal view {
        if (sequencerUptimeFeed == address(0)) {
            // No sequencer feed set, skip validation
            return;
        }

        // prettier-ignore
        (
            /*uint80 roundID*/,
            int256 answer,
            uint256 startedAt,
            /*uint256 updatedAt*/,
            /*uint80 answeredInRound*/
        ) = AggregatorV3Interface(sequencerUptimeFeed).latestRoundData();

        // Answer == 0: Sequencer is up
        // Answer == 1: Sequencer is down
        if (answer != 0) {
            revert SequencerDown();
        }

        // Make sure the grace period has passed after the
        // sequencer is back up.
        uint256 timeSinceUp = block.timestamp - startedAt;
        if (timeSinceUp <= GRACE_PERIOD_TIME) {
            revert GracePeriodNotOver();
        }

    }

    function addOracle(
        address token,
        address oracleAddress,
        uint256 minTimeTolerance
    )
        external
        onlyOwner
    {
        if (minTimeTolerance <= 0) {
            revert InvalidOracle();
        }

        if (!_isToken(token)) {
            revert TokenNotInPool();
        }

        uint256 latestPrice = SafeAggregatorInterface.safeUnsignedLatest(
            oracleAddress,
            minTimeTolerance
        );
        if (latestPrice <= 0) {
            revert InvalidOracle();
        }

        oracles[token] = OracleInfo({
            oracleAddress: oracleAddress,
            minTimeTolerance: minTimeTolerance,
            decimals: AggregatorV3Interface(oracleAddress).decimals()
        });

        emit OracleAdded(token, oracleAddress, minTimeTolerance);
    }

    function removeOracle(address token) external onlyOwner {
        if (oracles[token].oracleAddress == address(0)) {
            revert OracleNotSet();
        }

        delete oracles[token];
        emit OracleRemoved(token);
    }

    /**
     * @notice Returns the USD value of a given token amount using the current oracle price.
     * @dev Prices must use 18 decimals. Token amounts are normalized to 18 decimals before multiplying by price.
     * @param inputToken The address of the token to value.
     * @param inputAmount The amount of the token, using its native decimals.
     * @return The USD value of the token amount, using 18 decimals.
     */
    function _getAssetAmountUsdValue(
        address inputToken,
        uint256 inputAmount
    )
        internal view
        returns (uint256)
    {
        (uint256 inputPrice, uint8 priceDecimals) = currentOraclePriceWithDecimals(inputToken);

        uint256 tokenMultiplier = 10 ** (18 - _getTokenDecimals(inputToken));
        uint256 normalizedAmount = inputAmount * tokenMultiplier;

        // Normalize to 18 decimals and calculate the deposit value
        uint256 usdValue = (normalizedAmount * inputPrice) / (10 ** priceDecimals);

        return usdValue;
    }

    /**
     * @notice Calculates the current LP token price and total pool value using oracle prices.
     * @dev If no LP tokens exist yet, returns a base price. Prices must use 18 decimals.
     * @return lpPrice The LP token price in USD using 18 decimals.
     */
    function _getLpTokenPrice(uint256 _totalSupply) internal view returns (uint256 lpPrice) {
        uint256 n = _nTokens();
        uint256 totalValue;
        for (uint i = 0; i < n; ++i) {
            address token = _tokenAt(i);
            totalValue += _getAssetAmountUsdValue(token, _getLastBalance(token));
        }

        if (_totalSupply > 0) {
            lpPrice = (totalValue * Constants.ONE_IN_DEFAULT_DECIMALS) / _totalSupply;
        } else {
            lpPrice = Constants.ONE_IN_DEFAULT_DECIMALS;
        }
    }

    /**
     * @notice Reverts if the actual value exceeds the reference value plus allowed tolerance.
     * @param actualValue The actual USD value (e.g., LP tokens).
     * @param referenceValue The expected USD value (e.g., tokens deposit).
     */
    function _revertIfDeviationTooHigh(uint256 actualValue, uint256 referenceValue) internal pure {
        uint256 tolerance = (referenceValue * LP_VALUE_TOLERANCE_IN_BPS) /
            Constants.ONE_IN_BASIS_POINTS;

        if (actualValue > referenceValue + tolerance) {
            revert OracleValueDeviation();
        }
    }

    /**
     * @notice Returns the oracle address and minimum time tolerance for a given token.
     * @param token The token address.
     * @return oracleAddress The Chainlink oracle contract for this token.
     * @return minTimeTolerance The required minimum freshness in seconds for the price feed.
     */
    function getOracleInfo(
        address token
    )
        public view
        returns (
            address oracleAddress,
            uint256 minTimeTolerance
        )
    {
        OracleInfo memory info = oracles[token];
        return (info.oracleAddress, info.minTimeTolerance);
    }

    /**
     * @notice Returns the latest oracle price and its decimals for a given token.
     * @dev The price must be scaled to 18 decimals before use in calculations.
     * @param token The token to fetch the oracle price for.
     * @return price The current token price from the oracle.
     * @return decimals The number of decimals used by the price feed.
     */
    function currentOraclePriceWithDecimals(
        address token
    )
        internal view
        returns (
            uint256 price,
            uint8 decimals
        )
    {
        _enforceSequencerIsUp();

        OracleInfo memory info = oracles[token];

        price = SafeAggregatorInterface.safeUnsignedLatest(
            info.oracleAddress,
            info.minTimeTolerance
        );
        decimals = info.decimals;
    }

    /**
     * @notice Validates that an output amount falls within acceptable range of the fair price based on oracles.
     * @dev Uses current oracle prices and token decimals to compute an expected fair output amount,
     *      then applies a tolerance defined by `ORACLE_TOLERANCE_IN_BPS`.
     * @param inputAmount The input token amount used for the swap.
     * @param outputAmount The actual output token amount being validated.
     * @param inputToken The token address of the input.
     * @param outputToken The token address of the output.
     * @custom:reverts Reverts if the output amount exceeds the upper bound of the expected amount.
     */
    function validatePrice(
        uint256 inputAmount,
        uint256 outputAmount,
        address inputToken,
        address outputToken
    )
        internal view
    {
        (
            uint256 inputPrice,
            uint8 inputPriceDecimals
        ) = currentOraclePriceWithDecimals(inputToken);
        (
            uint256 outputPrice,
            uint8 outputPriceDecimals
        ) = currentOraclePriceWithDecimals(outputToken);

        UtilStruct memory s;

        s.decimalMultiplierX = 10 ** (18 - _getTokenDecimals(inputToken));
        s.decimalMultiplierY = 10 ** (18 - _getTokenDecimals(outputToken));
        s.qX = inputAmount * s.decimalMultiplierX;

        // Normalize prices to 18 decimals
        uint256 inputPriceNorm = inputPrice * (10 ** (18 - inputPriceDecimals));
        uint256 outputPriceNorm = outputPrice * (10 ** (18 - outputPriceDecimals));

        uint256 oracleFairOutputAmount = ((s.qX * inputPriceNorm) / outputPriceNorm) / s.decimalMultiplierY;
        uint256 upperBound = oracleFairOutputAmount * (Constants.ONE_IN_BASIS_POINTS + ORACLE_TOLERANCE_IN_BPS) / Constants.ONE_IN_BASIS_POINTS;

        if (outputAmount > upperBound) {
            revert OracleSwapDeviation();
        }
    }

    function _areAllOraclesSet() internal view returns (bool) {
        uint256 n = _nTokens();
        for (uint256 i = 0; i < n; ++i) {
            if (oracles[_tokenAt(i)].oracleAddress == address(0)) {
                return false;
            }
        }
        return true;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 49 of 65 : Conversions.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol";
import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x = `MIN_SD59x18 / UNIT`
/// - x = `MAX_SD59x18 / UNIT`
///
/// @param x The basic integer to convert.
/// @return result The same number converted to SD59x18.
function convert(int256 x) pure returns (SD59x18 result) {
    if (x < uMIN_SD59x18 / uUNIT) {
        revert PRBMath_SD59x18_Convert_Underflow(x);
    }
    if (x > uMAX_SD59x18 / uUNIT) {
        revert PRBMath_SD59x18_Convert_Overflow(x);
    }
    unchecked {
        result = SD59x18.wrap(x * uUNIT);
    }
}

/// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The SD59x18 number to convert.
/// @return result The same number as a simple integer.
function convert(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x) / uUNIT;
}

File 50 of 65 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);

/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD2x18.
UD2x18 constant UNIT = UD2x18.wrap(1e18);
uint64 constant uUNIT = 1e18;

File 51 of 65 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18, uMIN_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x = uMIN_SD1x18
/// - x = uMAX_SD1x18
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
    }
    if (xInt > uMAX_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xInt));
}

/// @notice Casts an SD59x18 number into SD21x18.
/// @dev Requirements:
/// - x = uMIN_SD21x18
/// - x = uMAX_SD21x18
function intoSD21x18(SD59x18 x) pure returns (SD21x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD21x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Underflow(x);
    }
    if (xInt > uMAX_SD21x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Overflow(x);
    }
    result = SD21x18.wrap(int128(xInt));
}

/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x = 0
/// - x = uMAX_UD2x18
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD2x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD21x18.
/// @dev Requirements:
/// - x = 0
/// - x = uMAX_UD21x18
function intoUD21x18(SD59x18 x) pure returns (UD21x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD21x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Overflow(x);
    }
    result = UD21x18.wrap(uint128(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x = 0
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x = 0
function intoUint256(SD59x18 x) pure returns (uint256 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
    }
    result = uint256(xInt);
}

/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x = 0
/// - x = uMAX_UINT128
function intoUint128(SD59x18 x) pure returns (uint128 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT128))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
    }
    result = uint128(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x = 0
/// - x = MAX_UINT40
function intoUint40(SD59x18 x) pure returns (uint40 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
    }
    result = uint40(uint256(xInt));
}

/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 53 of 65 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";

/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because SD1x18 ? SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}

/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x = 0
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x = 0
function intoUint128(SD1x18 x) pure returns (uint128 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
    }
    result = uint128(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x = 0
function intoUint256(SD1x18 x) pure returns (uint256 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
    }
    result = uint256(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x = 0
/// - x = MAX_UINT40
function intoUint40(SD1x18 x) pure returns (uint40 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
    }
    if (xInt > int64(uint64(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
    }
    result = uint40(uint64(xInt));
}

/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
    result = SD1x18.unwrap(x);
}

/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

File 54 of 65 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²56 + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²56 + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²56 + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²56 - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²56 - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²56. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such
            // that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 24.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 28
            inverse *= 2 - denominator * inverse; // inverse mod 2¹6
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 264
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²8
            inverse *= 2 - denominator * inverse; // inverse mod 2²56

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is
            // less than 2²56, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax = 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) = 1 mod p`. As a consequence, we have `a * a**(p-2) = 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `e_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2).
            // This is going to be our x_0 (and e_0)
            xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              = 0
            // Which proves that for all n = 1, sqrt(a) = x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // e_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | e_n² / (2 * x_n) |
            //         = e_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // e_1 = e_0² / | (2 * x_0) |
            //     = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     = 2**(2*e-4) / (3 * 2**(e-1))
            //     = 2**(e-3) / 3
            //     = 2**(e-3-log2(3))
            //     = 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n:
            // e_{n+1} = e_n² / | (2 * x_n) |
            //         = (2**(e-k))² / (2 * 2**(e-1))
            //         = 2**(2*e-2*k) / 2**e
            //         = 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144)  -- general case with k = 72

            // Because e = 128 (as discussed during the first estimation phase), we know have reached a precision
            // e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 55 of 65 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD21x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD21x18 number.
UD21x18 constant E = UD21x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD21x18 number can have.
uint128 constant uMAX_UD21x18 = 340282366920938463463_374607431768211455;
UD21x18 constant MAX_UD21x18 = UD21x18.wrap(uMAX_UD21x18);

/// @dev PI as a UD21x18 number.
UD21x18 constant PI = UD21x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD21x18.
uint256 constant uUNIT = 1e18;
UD21x18 constant UNIT = UD21x18.wrap(1e18);

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 57 of 65 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);

/// @dev The minimum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);

/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int64 constant uUNIT = 1e18;

File 58 of 65 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for SD1x18 global;

File 59 of 65 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);

File 60 of 65 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uEXP_MIN_THRESHOLD,
    uEXP2_MIN_THRESHOLD,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_SD59x18,
    uMAX_WHOLE_SD59x18,
    uMIN_SD59x18,
    uMIN_WHOLE_SD59x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x > MIN_SD59x18.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @return result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
    }
    result = xInt < 0 ? wrap(-xInt) : x;
}

/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    unchecked {
        // This operation is equivalent to `x / 2 +  y / 2`, and it can never overflow.
        int256 sum = (xInt >> 1) + (yInt >> 1);

        if (sum < 0) {
            // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
            // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
            assembly ("memory-safe") {
                result := add(sum, and(or(xInt, yInt), 1))
            }
        } else {
            // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
            result = wrap(sum + (xInt & yInt & 1));
        }
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x = MAX_WHOLE_SD59x18
///
/// @param x The SD59x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt > uMAX_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt > 0) {
                resultInt += uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @return result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x < 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();

    // Any input less than the threshold returns zero.
    // This check also prevents an overflow for very small numbers.
    if (xInt < uEXP_MIN_THRESHOLD) {
        return ZERO;
    }

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xInt > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        int256 doubleUnitProduct = xInt * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x < -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x < 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        // The inverse of any number less than the threshold is truncated to zero.
        if (xInt < uEXP2_MIN_THRESHOLD) {
            return ZERO;
        }

        unchecked {
            // Inline the fixed-point inversion to save gas.
            result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
        }
    } else {
        // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
        if (xInt > uEXP2_MAX_INPUT) {
            revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x_192x64 = uint256((xInt << 64) / uUNIT);

            // It is safe to cast the result to int256 due to the checks above.
            result = wrap(int256(Common.exp2(x_192x64)));
        }
    }
}

/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x = MIN_WHOLE_SD59x18
///
/// @param x The SD59x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < uMIN_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt < 0) {
                resultInt -= uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @return result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % uUNIT);
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == 0 || yInt == 0) {
        return ZERO;
    }

    unchecked {
        // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
        int256 xyInt = xInt * yInt;
        if (xyInt / xInt != yInt) {
            revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
        }

        // The product must not be negative, since complex numbers are not supported.
        if (xyInt < 0) {
            revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        uint256 resultUint = Common.sqrt(uint256(xyInt));
        result = wrap(int256(resultUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(uUNIT_SQUARED / x.unwrap());
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
    // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
    // {log2} can return is ~195_205294292027477728.
    result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        default { result := uMAX_SD59x18 }
    }

    if (result.unwrap() == uMAX_SD59x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x > 0
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt <= 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    unchecked {
        int256 sign;
        if (xInt >= uUNIT) {
            sign = 1;
        } else {
            sign = -1;
            // Inline the fixed-point inversion to save gas.
            xInt = uUNIT_SQUARED / xInt;
        }

        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(uint256(xInt / uUNIT));

        // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
        // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
        int256 resultInt = int256(n) * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        int256 y = xInt >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultInt * sign);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        int256 DOUBLE_UNIT = 2e18;
        for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultInt = resultInt + delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        resultInt *= sign;
        result = wrap(resultInt);
    }
}

/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xInt == 0) {
        return yInt == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xInt == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yInt == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yInt == uUNIT) {
        return x;
    }

    // Calculate the result using the formula.
    result = exp2(mul(log2(x), y));
}

/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
    uint256 xAbs = uint256(abs(x).unwrap());

    // Calculate the first iteration of the loop in advance.
    uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    uint256 yAux = y;
    for (yAux >>= 1; yAux > 0; yAux >>= 1) {
        xAbs = Common.mulDiv18(xAbs, xAbs);

        // Equivalent to `y % 2 == 1`.
        if (yAux & 1 > 0) {
            resultAbs = Common.mulDiv18(resultAbs, xAbs);
        }
    }

    // The result must fit in SD59x18.
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
    }

    unchecked {
        // Is the base negative and the exponent odd? If yes, the result should be negative.
        int256 resultInt = int256(resultAbs);
        bool isNegative = x.unwrap() < 0 && y & 1 == 1;
        if (isNegative) {
            resultInt = -resultInt;
        }
        result = wrap(resultInt);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x = 0, since complex numbers are not supported.
/// - x = MAX_SD59x18 / UNIT
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
    }
    if (xInt > uMAX_SD59x18 / uUNIT) {
        revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
    }

    unchecked {
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
        // In this case, the two numbers are both the square root.
        uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
        result = wrap(int256(resultUint));
    }
}

File 61 of 65 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD21x18 } from "./ValueType.sol";

/// @notice Casts an SD21x18 number into SD59x18.
/// @dev There is no overflow check because SD21x18 ? SD59x18.
function intoSD59x18(SD21x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD21x18.unwrap(x)));
}

/// @notice Casts an SD21x18 number into UD60x18.
/// @dev Requirements:
/// - x = 0
function intoUD60x18(SD21x18 x) pure returns (UD60x18 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint128(xInt));
}

/// @notice Casts an SD21x18 number into uint128.
/// @dev Requirements:
/// - x = 0
function intoUint128(SD21x18 x) pure returns (uint128 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUint128_Underflow(x);
    }
    result = uint128(xInt);
}

/// @notice Casts an SD21x18 number into uint256.
/// @dev Requirements:
/// - x = 0
function intoUint256(SD21x18 x) pure returns (uint256 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUint256_Underflow(x);
    }
    result = uint256(uint128(xInt));
}

/// @notice Casts an SD21x18 number into uint40.
/// @dev Requirements:
/// - x = 0
/// - x = MAX_UINT40
function intoUint40(SD21x18 x) pure returns (uint40 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUint40_Underflow(x);
    }
    if (xInt > int128(uint128(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD21x18_ToUint40_Overflow(x);
    }
    result = uint40(uint128(xInt));
}

/// @notice Alias for {wrap}.
function sd21x18(int128 x) pure returns (SD21x18 result) {
    result = SD21x18.wrap(x);
}

/// @notice Unwraps an SD21x18 number into int128.
function unwrap(SD21x18 x) pure returns (int128 result) {
    result = SD21x18.unwrap(x);
}

/// @notice Wraps an int128 number into SD21x18.
function wrap(int128 x) pure returns (SD21x18 result) {
    result = SD21x18.wrap(x);
}

File 62 of 65 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);

/// @dev Any value less than this returns 0 in {exp}.
int256 constant uEXP_MIN_THRESHOLD = -41_446531673892822322;
SD59x18 constant EXP_MIN_THRESHOLD = SD59x18.wrap(uEXP_MIN_THRESHOLD);

/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);

/// @dev Any value less than this returns 0 in {exp2}.
int256 constant uEXP2_MIN_THRESHOLD = -59_794705707972522261;
SD59x18 constant EXP2_MIN_THRESHOLD = SD59x18.wrap(uEXP2_MIN_THRESHOLD);

/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);

/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);

/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);

/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);

/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);

/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);

/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);

/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);

File 63 of 65 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);

File 64 of 65 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 800
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"theSigner","type":"address"},{"internalType":"address","name":"theWrapper","type":"address"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"address[]","name":"_oracles","type":"address[]"},{"internalType":"uint256[]","name":"minTimeTolerances","type":"uint256[]"},{"internalType":"address","name":"initialOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"DigestAlreadyUsed","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"EthTransferFailed","type":"error"},{"inputs":[],"name":"ExistingVestingDeposit","type":"error"},{"inputs":[],"name":"ExpiredMessage","type":"error"},{"inputs":[],"name":"GracePeriodNotOver","type":"error"},{"inputs":[],"name":"InsufficientInput","type":"error"},{"inputs":[],"name":"InvalidFeeSplitTooMuch","type":"error"},{"inputs":[],"name":"InvalidFeeSplitTooSoon","type":"error"},{"inputs":[],"name":"InvalidLPTokenValue","type":"error"},{"inputs":[],"name":"InvalidLockTime","type":"error"},{"inputs":[],"name":"InvalidOracle","type":"error"},{"inputs":[],"name":"InvalidSequencerFeed","type":"error"},{"inputs":[],"name":"InvariantCheckFailed","type":"error"},{"inputs":[],"name":"MarketTradeHalted","type":"error"},{"inputs":[],"name":"MismatchedArrayLengths","type":"error"},{"inputs":[],"name":"OracleNotSet","type":"error"},{"inputs":[],"name":"OracleStalePrice","type":"error"},{"inputs":[],"name":"OracleSwapDeviation","type":"error"},{"inputs":[],"name":"OracleValueDeviation","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[],"name":"PRBMath_SD59x18_Div_InputTooSmall","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"},{"internalType":"SD59x18","name":"y","type":"int256"}],"name":"PRBMath_SD59x18_Div_Overflow","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"}],"name":"PRBMath_SD59x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"}],"name":"PRBMath_SD59x18_Log_InputTooSmall","type":"error"},{"inputs":[],"name":"PRBMath_SD59x18_Mul_InputTooSmall","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"},{"internalType":"SD59x18","name":"y","type":"int256"}],"name":"PRBMath_SD59x18_Mul_Overflow","type":"error"},{"inputs":[],"name":"PoolStateDeviation","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntToUint","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintToInt","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SequencerDown","type":"error"},{"inputs":[],"name":"SignatureValidation","type":"error"},{"inputs":[],"name":"TokenDecimalsNotSupported","type":"error"},{"inputs":[],"name":"TokenNotInPool","type":"error"},{"inputs":[],"name":"UnauthorizedCaller","type":"error"},{"inputs":[],"name":"UnlockDepositFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"withdrawer","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokens","type":"uint256"},{"indexed":true,"internalType":"address","name":"assetAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"assetAmount","type":"uint256"}],"name":"AssetWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"depositor","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockTime","type":"uint256"}],"name":"Deposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"entitledFeesInDollars","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"averagePoolBalanceInDollars","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokensTransferred","type":"uint256"}],"name":"FeesTaken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"}],"name":"MarketHalted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"}],"name":"MarketResumed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"oracleAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"minTimeTolerance","type":"uint256"}],"name":"OracleAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"OracleRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sequencerUptimeFeed","type":"address"}],"name":"SequencerUptimeFeedAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"inAsset","type":"address"},{"indexed":true,"internalType":"address","name":"outAsset","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"inAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"outAmount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"Swapped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newAddress","type":"address"}],"name":"TriageAddressChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"withdrawer","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fractionOfPool","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"DESIGNATED_SIGNER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WRAPPER_CONTRACT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"oracleAddress","type":"address"},{"internalType":"uint256","name":"minTimeTolerance","type":"uint256"}],"name":"addOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"allTokensBalance","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allTokensStateBalance","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnToWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"depositor","type":"address"}],"name":"canUnlockDeposit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"depositor","type":"address"},{"internalType":"uint256[]","name":"depositAmounts","type":"uint256[]"},{"internalType":"uint256","name":"lockTime","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"depositor","type":"address"},{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"lockTime","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"depositSingleAsset","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getLastBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getOracleInfo","outputs":[{"internalType":"address","name":"oracleAddress","type":"address"},{"internalType":"uint256","name":"minTimeTolerance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isTradeHalted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastFeeWithdrawal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"packedInput","type":"uint256"},{"internalType":"uint256","name":"packedOutput","type":"uint256"},{"internalType":"uint256","name":"packedGoodUntil","type":"uint256"},{"internalType":"bytes32","name":"auxData","type":"bytes32"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"vs","type":"bytes32"}],"name":"packedSwap","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"packedInput","type":"uint256"},{"internalType":"uint256","name":"packedConfig","type":"uint256"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"packedTransmitAndDepositSingleAsset","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"packedInput","type":"uint256"},{"internalType":"uint256","name":"packedOutput","type":"uint256"},{"internalType":"uint256","name":"packedGoodUntil","type":"uint256"},{"internalType":"bytes32","name":"auxData","type":"bytes32"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"vs","type":"bytes32"}],"name":"packedTransmitAndSwap","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"removeOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resumeTrade","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"sellEthForToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"sellTokenForEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sequencerUptimeFeed","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"feedAddress","type":"address"}],"name":"setSequencerUptimeFeed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTriage","type":"address"}],"name":"setTriageRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopTrade","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"entitledFeesInDollars","type":"uint256"},{"internalType":"uint256","name":"averagePoolBalanceInDollars","type":"uint256"}],"name":"takeFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"tokenAt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"depositAmounts","type":"uint256[]"},{"internalType":"uint256","name":"lockTime","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"transmitAndDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"lockTime","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"transmitAndDepositSingleAsset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"transmitAndSellTokenForEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"transmitAndSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"triageRole","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unlockDeposit","outputs":[{"internalType":"uint256","name":"poolTokens","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vestingDeposits","outputs":[{"internalType":"uint256","name":"lockedUntil","type":"uint256"},{"internalType":"uint256","name":"poolTokenAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenHolder","type":"address"},{"internalType":"uint256","name":"poolTokenAmountToBurn","type":"uint256"},{"internalType":"address","name":"assetAddress","type":"address"},{"internalType":"uint256","name":"assetAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"withdrawSingleAsset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60e060405234801561001057600080fd5b5060405161664438038061664483398101604081905261002f91610661565b838383888884868061006260408051808201909152600e81526d213630b232902628102a37b5b2b760911b602082015290565b6040805180820190915260078152660426c6164654c560cc1b6020820152600361008c838261080b565b506004610099828261080b565b50506001600555506001600160a01b0381166100cf57604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b6100d8816103ea565b506001600160a01b03841660a05281516000905b808210156101e5576000848381518110610108576101086108c9565b60209081029190910101519050610120600b8261043c565b506000816001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610161573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061018591906108df565b905060128160ff1611156101ac57604051637c10f18b60e11b815260040160405180910390fd5b6001600160a01b0382166000908152600a60205260409020805460ff191660ff8316179055836101db81610909565b94505050506100ec565b61023060405180604001604052806005815260200164426c61646560d81b815250604051806040016040528060058152602001640322e302e360dc1b8152503061045a60201b60201c565b608052505050506001600160a01b031660c052508151156103dc578151835114158061025e57508051835114155b1561027c57604051632b477e7160e11b815260040160405180910390fd5b60005b83518110156103da5760405180606001604052808483815181106102a5576102a56108c9565b60200260200101516001600160a01b031681526020018383815181106102cd576102cd6108c9565b602002602001015181526020018483815181106102ec576102ec6108c9565b60200260200101516001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610331573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061035591906108df565b60ff16815250600f6000868481518110610371576103716108c9565b6020908102919091018101516001600160a01b039081168352828201939093526040918201600020845181546001600160a01b03191694169390931783558301516001808401919091559201516002909101805460ff191660ff9092169190911790550161027f565b505b50505050505050505061095f565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6000610451836001600160a01b038416610519565b90505b92915050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8460405160200161048e9190610930565b60405160208183030381529060405280519060200120846040516020016104b59190610930565b60408051601f1981840301815282825280516020918201209083019490945281019190915260608101919091524660808201526001600160a01b03831660a082015260c0016040516020818303038152906040528051906020012090509392505050565b600081815260018301602052604081205461056057508154600181810184556000848152602080822090930184905584548482528286019093526040902091909155610454565b506000610454565b80516001600160a01b038116811461057f57600080fd5b919050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b03811182821017156105c2576105c2610584565b604052919050565b60006001600160401b038211156105e3576105e3610584565b5060051b60200190565b600082601f8301126105fe57600080fd5b815161061161060c826105ca565b61059a565b8082825260208201915060208360051b86010192508583111561063357600080fd5b602085015b838110156106575761064981610568565b835260209283019201610638565b5095945050505050565b60008060008060008060c0878903121561067a57600080fd5b61068387610568565b955061069160208801610568565b60408801519095506001600160401b038111156106ad57600080fd5b6106b989828a016105ed565b606089015190955090506001600160401b038111156106d757600080fd5b6106e389828a016105ed565b608089015190945090506001600160401b0381111561070157600080fd5b8701601f8101891361071257600080fd5b805161072061060c826105ca565b8082825260208201915060208360051b85010192508b83111561074257600080fd5b6020840193505b82841015610764578351825260209384019390910190610749565b94506107769250505060a08801610568565b90509295509295509295565b600181811c9082168061079657607f821691505b6020821081036107b657634e487b7160e01b600052602260045260246000fd5b50919050565b601f82111561080657806000526020600020601f840160051c810160208510156107e35750805b601f840160051c820191505b8181101561080357600081556001016107ef565b50505b505050565b81516001600160401b0381111561082457610824610584565b610838816108328454610782565b846107bc565b6020601f82116001811461086c57600083156108545750848201515b600019600385901b1c1916600184901b178455610803565b600084815260208120601f198516915b8281101561089c578785015182556020948501946001909201910161087c565b50848210156108ba5786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b600052603260045260246000fd5b6000602082840312156108f157600080fd5b815160ff8116811461090257600080fd5b9392505050565b60006001820161092957634e487b7160e01b600052601160045260246000fd5b5060010190565b6000825160005b818110156109515760208186018101518583015201610937565b506000920191825250919050565b60805160a05160c051615c5b6109e9600039600081816105d401528181610f120152818161140301528181611ded01528181611e1701528181612062015281816120cb015281816122040152818161225001526125f601526000818161070f0152612b7c015260008181611f3d0152818161263201528181612f0001526131c70152615c5b6000f3fe60806040526004361061032d5760003560e01c806370a08231116101a5578063b8f44963116100ec578063d9bd8ba411610095578063eb1c64531161006f578063eb1c64531461098e578063ecc7633d146109ae578063f2fde38b146109db578063fdc85fc4146109fb57600080fd5b8063d9bd8ba414610908578063da5014c514610928578063dd62ed3e1461094857600080fd5b8063c4828729116100c6578063c4828729146108a8578063c72da66a146108c8578063ceaf4339146108e857600080fd5b8063b8f44963146107b9578063bfdb6b04146107d9578063c325a5491461085f57600080fd5b80638dda8f3f1161014e578063a726470511610128578063a726470514610766578063a7d46c2f14610786578063a9059cbb1461079957600080fd5b80638dda8f3f146106fd57806392a91a3a1461073157806395d89b411461075157600080fd5b80638414efe51161017f5780638414efe5146106b45780638baeefce146106ca5780638da5cb5b146106df57600080fd5b806370a0823114610654578063715018a61461068a578063780dd6641461069f57600080fd5b80632e7e1bd3116102745780633b26e4eb1161021d5780635aecdda5116101f75780635aecdda5146105c25780635b6f4dce1461060e578063608de8aa1461062157806365cd6db01461064157600080fd5b80633b26e4eb1461056f5780634372328a1461058f5780634cb6864c146105a257600080fd5b806334cb3d7f1161024e57806334cb3d7f14610504578063368dfc181461053a578063377a368c1461055a57600080fd5b80632e7e1bd3146104b3578063313ce567146104c8578063343add83146104e457600080fd5b80631b6a8759116102d657806326d9b5b3116102b057806326d9b5b31461046157806327a9b424146104805780632b651a6c1461049357600080fd5b80631b6a8759146104085780631dc6f5a51461041d57806323b872dd1461044157600080fd5b80630ce9a63d116103075780630ce9a63d146103b657806318160ddd146103c957806319f37361146103e857600080fd5b806306fdde0314610339578063078795ee14610364578063095ea7b31461038657600080fd5b3661033457005b600080fd5b34801561034557600080fd5b5061034e610a1b565b60405161035b9190615122565b60405180910390f35b34801561037057600080fd5b5061038461037f3660046151ac565b610aad565b005b34801561039257600080fd5b506103a66103a136600461523a565b610b6f565b604051901515815260200161035b565b6103846103c4366004615264565b610b89565b3480156103d557600080fd5b506002545b60405190815260200161035b565b3480156103f457600080fd5b506103a66104033660046152a7565b610bd2565b34801561041457600080fd5b506103da610bdf565b34801561042957600080fd5b50610432610bf0565b60405161035b939291906152c2565b34801561044d57600080fd5b506103a661045c366004615355565b610d31565b34801561046d57600080fd5b50600854600160a01b900460ff166103a6565b61038461048e366004615392565b610d57565b34801561049f57600080fd5b506103846104ae3660046153ea565b610de5565b3480156104bf57600080fd5b50610384610e69565b3480156104d457600080fd5b506040516012815260200161035b565b3480156104f057600080fd5b506103846104ff366004615492565b610eab565b34801561051057600080fd5b506103da61051f3660046152a7565b6001600160a01b031660009081526009602052604090205490565b34801561054657600080fd5b506103846105553660046154ea565b610fec565b34801561056657600080fd5b506103da611064565b34801561057b57600080fd5b5061038461058a3660046153ea565b6110ba565b61038461059d366004615548565b6110ff565b3480156105ae57600080fd5b506103846105bd366004615392565b6111e1565b3480156105ce57600080fd5b506105f67f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b03909116815260200161035b565b61038461061c3660046155dd565b611264565b34801561062d57600080fd5b5061038461063c36600461563e565b6112c9565b61038461064f3660046156c2565b611347565b34801561066057600080fd5b506103da61066f3660046152a7565b6001600160a01b031660009081526020819052604090205490565b34801561069657600080fd5b50610384611493565b3480156106ab57600080fd5b506104326114a7565b3480156106c057600080fd5b506103da60075481565b3480156106d657600080fd5b506103846115b8565b3480156106eb57600080fd5b506006546001600160a01b03166105f6565b34801561070957600080fd5b506105f67f000000000000000000000000000000000000000000000000000000000000000081565b34801561073d57600080fd5b506105f661074c3660046154ea565b611600565b34801561075d57600080fd5b5061034e61160d565b34801561077257600080fd5b50600e546105f6906001600160a01b031681565b610384610794366004615264565b61161c565b3480156107a557600080fd5b506103a66107b436600461523a565b61165c565b3480156107c557600080fd5b506103846107d43660046152a7565b61166a565b3480156107e557600080fd5b506108406107f43660046152a7565b6001600160a01b039081166000908152600f602090815260409182902082516060810184528154909416808552600182015492850183905260029091015460ff16939092019290925291565b604080516001600160a01b03909316835260208301919091520161035b565b34801561086b57600080fd5b5061089361087a3660046152a7565b600d602052600090815260409020805460019091015482565b6040805192835260208301919091520161035b565b3480156108b457600080fd5b506103846108c3366004615355565b6116cf565b3480156108d457600080fd5b506103846108e3366004615392565b611869565b3480156108f457600080fd5b506103846109033660046152a7565b6118ae565b34801561091457600080fd5b5061038461092336600461572c565b611900565b34801561093457600080fd5b506008546105f6906001600160a01b031681565b34801561095457600080fd5b506103da61096336600461574e565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b34801561099a57600080fd5b506103a66109a93660046152a7565b611a03565b3480156109ba57600080fd5b506103da6109c93660046152a7565b60096020526000908152604090205481565b3480156109e757600080fd5b506103846109f63660046152a7565b611a33565b348015610a0757600080fd5b50610384610a163660046152a7565b611a76565b606060038054610a2a90615781565b80601f0160208091040260200160405190810160405280929190818152602001828054610a5690615781565b8015610aa35780601f10610a7857610100808354040283529160200191610aa3565b820191906000526020600020905b815481529060010190602001808311610a8657829003601f168201915b5050505050905090565b610ab5611b17565b8342811015610ad757604051639a29b6fb60e01b815260040160405180910390fd5b866001811015610afa5760405163abf20e8f60e01b815260040160405180910390fd5b610b0f6001600160a01b038b1633308c611b42565b610b63338b8b8b8b8b610b27368d90038d018d61580b565b8b8b8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611bc492505050565b50505050505050505050565b600033610b7d818585611c2e565b60019150505b92915050565b610b91611b17565b8363ffffffff1642811015610bb957604051639a29b6fb60e01b815260040160405180910390fd5b610bc98787878787876001611c40565b50505050505050565b6000610b83600b83611ce4565b6000610beb600b611d06565b905090565b606080600080610bfe610bdf565b905060008167ffffffffffffffff811115610c1b57610c1b6157b5565b604051908082528060200260200182016040528015610c44578160200160208202803683370190505b50905060008267ffffffffffffffff811115610c6257610c626157b5565b604051908082528060200260200182016040528015610c8b578160200160208202803683370190505b50905060005b83811015610d17576000610ca482611600565b9050610cc5816001600160a01b031660009081526009602052604090205490565b848381518110610cd757610cd761586f565b60200260200101818152505080838381518110610cf657610cf661586f565b6001600160a01b039092166020928302919091019091015250600101610c91565b508181610d2360025490565b955095509550505050909192565b600033610d3f858285611d10565b610d4a858585611d89565b60019150505b9392505050565b610d5f611b17565b8463ffffffff1642811015610d8757604051639a29b6fb60e01b815260040160405180910390fd5b610dda8989898989610d9e368b90038b018b61580b565b89898080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611de892505050565b505050505050505050565b610ded611b17565b8463ffffffff1642811015610e1557604051639a29b6fb60e01b815260040160405180910390fd5b610b638a8a8a8a8a8a610e2d368c90038c018c61580b565b8a8a8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611e3e92505050565b610e71611ec5565b6008805460ff60a01b1916905560405133907f542e2be6bf739156fc5d022ffac81c0c9b281c19e6491b63bb14281433138b1790600090a2565b610eb3611b17565b87336001600160a01b03821614610edd57604051635c427cd960e01b815260040160405180910390fd5b8442811015610eff57604051639a29b6fb60e01b815260040160405180910390fd5b60006001600160a01b038916610f3657507f0000000000000000000000000000000000000000000000000000000000000000975060015b6000610f488c8c8c8c8c8c8c8c611ef0565b9050610f5381611f9a565b610f5e8a8a8d611fe5565b610f68338c61200a565b8115610f7d57610f78338a612044565b610f88565b610f888a338b612103565b896001600160a01b03168c6001600160a01b03167f41e79959bad1d45680578f8a544fb5af76d72b04090e65a51b4d0eaab959a9ab8d8c604051610fd6929190918252602082015260400190565b60405180910390a3505050505050505050505050565b6000610ff760025490565b611006836402540be40061589b565b61101091906158c8565b905061101c338361200a565b61102581612132565b604080518381526020810183905233917f92ccf450a286a957af52509bc1c9939d1a6a481783e142e41e2499f0bb66ebc6910160405180910390a25050565b600061106f33611a03565b61108c5760405163bb1c8b6560e01b815260040160405180910390fd5b50336000818152600d602052604081206001810180549183905591909155906110b790309083611d89565b90565b6110c2611b17565b8463ffffffff16428110156110ea57604051639a29b6fb60e01b815260040160405180910390fd5b610e156001600160a01b038b1633308b611b42565b611107611b17565b834281101561112957604051639a29b6fb60e01b815260040160405180910390fd5b86600181101561114c5760405163abf20e8f60e01b815260040160405180910390fd5b6111d48b8b8b808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152508d92508c91508b9050611198368c90038c018c61580b565b8a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506121b092505050565b5050505050505050505050565b6111e9611b17565b8463ffffffff164281101561121157604051639a29b6fb60e01b815260040160405180910390fd5b610dda8989898989611228368b90038b018b61580b565b89898080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506121fb92505050565b61126c611b17565b834281101561128e57604051639a29b6fb60e01b815260040160405180910390fd5b8660018110156112b15760405163abf20e8f60e01b815260040160405180910390fd5b6111d48b8b8b8b8b8b610b27368d90038d018d61580b565b6112d1611b17565b6000875b808210156113365760008a8a848181106112f1576112f161586f565b90506020020135905060008111156113235761132333308361131287611600565b6001600160a01b0316929190611b42565b8261132d816158ea565b935050506112d5565b610b63338b8b8b8b8b8b8b8b6110ff565b61134f611b17565b608085901c6bffffffffffffffffffffffff602087901c1662ffffff600888901c164282101561139257604051639a29b6fb60e01b815260040160405180910390fd5b60018110156113b45760405163abf20e8f60e01b815260040160405180910390fd5b6040805160608082018352600080835260208084018290529284018190528351918201845260ff8c1682529181018a905291820188905260a08b901c908b906001600160a01b038216611429577f0000000000000000000000000000000000000000000000000000000000000000915061143e565b61143e6001600160a01b038316333086611b42565b50611485338284878a8a898f8f8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611bc492505050565b505050505050505050505050565b61149b6122c8565b6114a560006122f5565b565b6060806000806114b5610bdf565b905060008167ffffffffffffffff8111156114d2576114d26157b5565b6040519080825280602002602001820160405280156114fb578160200160208202803683370190505b50905060008267ffffffffffffffff811115611519576115196157b5565b604051908082528060200260200182016040528015611542578160200160208202803683370190505b50905060005b83811015610d1757600061155b82611600565b905061156681612347565b8483815181106115785761157861586f565b602002602001018181525050808383815181106115975761159761586f565b6001600160a01b039092166020928302919091019091015250600101611548565b6115c0611ec5565b6008805460ff60a01b1916600160a01b17905560405133907fcabe820ce05cacdbb20404e8bba2a9cbadaa7ff6e3a3294b6d5152526765942090600090a2565b6000610b83600b836123b2565b606060048054610a2a90615781565b611624611b17565b8363ffffffff164281101561164c57604051639a29b6fb60e01b815260040160405180910390fd5b610bc98787878787876000611c40565b600033610b7d818585611d89565b6116726122c8565b61167b816123be565b600e80546001600160a01b0319166001600160a01b0383169081179091556040519081527f33fa9d54e48b14392fffa8aa3cfec14c54552fa92d5f44048005ec6437ee97649060200160405180910390a150565b6116d76122c8565b600081116116f857604051639589a27d60e01b815260040160405180910390fd5b61170183612464565b61171e57604051630732619560e01b815260040160405180910390fd5b600061172a838361246f565b90506000811161174d57604051639589a27d60e01b815260040160405180910390fd5b6040518060600160405280846001600160a01b03168152602001838152602001846001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa1580156117ab573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906117cf9190615903565b60ff9081169091526001600160a01b038681166000818152600f6020908152604091829020865181546001600160a01b031916908616178155868201516001820155958201516002909601805460ff19169690951695909517909355825191871682529281018590527fc9c48c8a3a63b9d481d1f1dc5a7ca531d0fe9ddfd25f00f6c91090175f7b0053910160405180910390a250505050565b611871611b17565b8463ffffffff164281101561189957604051639a29b6fb60e01b815260040160405180910390fd5b6112116001600160a01b038a1633308b611b42565b6118b66122c8565b600880546001600160a01b0319166001600160a01b0383169081179091556040517f7fb818801719b0f482b3e69a97fd8c5a1bddd186808ae2a83bdf1dac62c550ec90600090a250565b6119086122c8565b60008161191a846402540be40061589b565b61192491906158c8565b905061193660146402540be4006158c8565b8111156119565760405163051fb32160e01b815260040160405180910390fd5b62093a806007546119679190615920565b42101561198757604051637bd0a7dd60e01b815260040160405180910390fd5b4260075560006402540be40061199c60025490565b6119a6908461589b565b6119b091906158c8565b90506119bc3382612544565b60408051858152602081018590529081018290527f26092d07f0187f928cdea6737c0e6d7496aea7e4d4fb32daf1ccd48793ce0b8e9060600160405180910390a150505050565b6001600160a01b0381166000908152600d60205260408120600181015415801590610d5057505442101592915050565b611a3b6122c8565b6001600160a01b038116611a6a57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b611a73816122f5565b50565b611a7e6122c8565b6001600160a01b038181166000908152600f602052604090205416611ab657604051633e1e538160e21b815260040160405180910390fd5b6001600160a01b0381166000818152600f602052604080822080546001600160a01b031916815560018101839055600201805460ff19169055517f9c8e7d83025bef8a04c664b2f753f64b8814bdb7e27291d7e50935f18cc3c7129190a250565b600854600160a01b900460ff16156114a5576040516326f4363f60e21b815260040160405180910390fd5b6040516001600160a01b038481166024830152838116604483015260648201839052611bbe9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505061257a565b50505050565b611bcd87610bd2565b611bea57604051630732619560e01b815260040160405180910390fd5b611bf26125eb565b6000611c04898989898989898961261b565b9050611c0f81611f9a565b611c1a88888761266a565b611c23886126a3565b610dda898787612727565b611c3b838383600161277b565b505050565b6040805160608101825260008082526020820181905291810182905260a089811c928a92918a901c918a916001600160ff1b03881690611c8560ff8a901c601b615933565b6040805160608101825260ff9092168252602082018c9052810192909252509050858015611cbb57506001600160a01b03841615155b15611cd557611cd56001600160a01b038516333088611b42565b611485848387868e8e87612850565b6001600160a01b03811660009081526001830160205260408120541515610d50565b6000610b83825490565b6001600160a01b03838116600090815260016020908152604080832093861683529290522054600019811015611bbe5781811015611d7a57604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401611a61565b611bbe8484848403600061277b565b6001600160a01b038316611db357604051634b637e8f60e11b815260006004820152602401611a61565b6001600160a01b038216611ddd5760405163ec442f0560e01b815260006004820152602401611a61565b611c3b8383836128c9565b611e127f0000000000000000000000000000000000000000000000000000000000000000876129f3565b610bc97f0000000000000000000000000000000000000000000000000000000000000000888888888888885b600080611e508a8a8a8a8a8a8a612a67565b91509150611e608a8a8784612ab1565b846001600160a01b0316896001600160a01b03168b6001600160a01b03167f4be05c8d54f5e056ab2cfa033e9f582057001268c3e28561bb999d35d2c8f2c8858588604051611eb19392919061594c565b60405180910390a450505050505050505050565b6008546001600160a01b031633146114a557604051635c427cd960e01b815260040160405180910390fd5b6000806000611f3485858080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250612ae992505050565b91509150611f687f00000000000000000000000000000000000000000000000000000000000000008c8c8c8c8c8888612b39565b9250611f8283611f7d3689900389018961580b565b612b75565b611f8c8282612ba0565b505098975050505050505050565b60008181526010602052604090205460ff1615611fca576040516306542de760e11b815260040160405180910390fd5b6000908152601060205260409020805460ff19166001179055565b611fed612d37565b15611c3b576000611ffe8484612d99565b9050611bbe8183612e22565b6001600160a01b03821661203457604051634b637e8f60e11b815260006004820152602401611a61565b612040826000836128c9565b5050565b61204c612e62565b604051632e1a7d4d60e01b8152600481018290527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690632e1a7d4d90602401600060405180830381600087803b1580156120ae57600080fd5b505af11580156120c2573d6000803e3d6000fd5b505050506120ef7f00000000000000000000000000000000000000000000000000000000000000006126a3565b6120f982826129f3565b6120406001600555565b61210b612e62565b61211f6001600160a01b0384168383612e8c565b612128836126a3565b611c3b6001600555565b600080600061213f610bdf565b90505b80821015611bbe57600061215583611600565b90506402540be40061217c826001600160a01b031660009081526009602052604090205490565b612186908761589b565b61219091906158c8565b935061219d813386612103565b826121a7816158ea565b93505050612142565b6121b86125eb565b60006121c988888888888888612ebd565b90506121d481611f9a565b6121de8786612f4f565b6121e6612fee565b6121f1888787612727565b5050505050505050565b60008061222d897f00000000000000000000000000000000000000000000000000000000000000008a8a8a8a8a612a67565b9150915061223a896126a3565b6122448582612044565b846001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168a6001600160a01b03167f4be05c8d54f5e056ab2cfa033e9f582057001268c3e28561bb999d35d2c8f2c88585886040516122b59392919061594c565b60405180910390a4505050505050505050565b6006546001600160a01b031633146114a55760405163118cdaa760e01b8152336004820152602401611a61565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6040516370a0823160e01b81523060048201526000906001600160a01b038316906370a0823190602401602060405180830381865afa15801561238e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b839190615974565b6000610d508383613029565b6001600160a01b0381166123e557604051631c06ca6760e01b815260040160405180910390fd5b806001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa92505050801561243f575060408051601f3d908101601f1916820190925261243c918101906159a7565b60015b61245c57604051631c06ca6760e01b815260040160405180910390fd5b505050505050565b6000610b8382610bd2565b6000806000806000866001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa1580156124b5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906124d991906159a7565b9450945050935093508069ffffffffffffffffffff168469ffffffffffffffffffff1614158061251257504261250f8784615920565b11155b156125305760405163a9f7344560e01b815260040160405180910390fd5b61253983613053565b979650505050505050565b6001600160a01b03821661256e5760405163ec442f0560e01b815260006004820152602401611a61565b612040600083836128c9565b600080602060008451602086016000885af18061259d576040513d6000823e3d81fd5b50506000513d915081156125b55780600114156125c2565b6001600160a01b0384163b155b15611bbe57604051635274afe760e01b81526001600160a01b0385166004820152602401611a61565b34156114a5576114a57f0000000000000000000000000000000000000000000000000000000000000000346129f3565b600080600061262984612ae9565b9150915061265e7f00000000000000000000000000000000000000000000000000000000000000008c8c8c8c8c8c898961307d565b9250611f828386612b75565b6000612674612d37565b1561267d575060015b600061268a8585846130bb565b9050811561269c5761269c8382612e22565b5050505050565b6040516370a0823160e01b81523060048201526001600160a01b038216906370a0823190602401602060405180830381865afa1580156126e7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061270b9190615974565b6001600160a01b03909116600090815260096020526040902055565b612732838383613105565b60408051828152602081018490526001600160a01b038516917f73a19dd210f1a7f902193214c0ee91dd35ee5b4d920cba8d519eca65a7b488ca910160405180910390a2505050565b6001600160a01b0384166127a55760405163e602df0560e01b815260006004820152602401611a61565b6001600160a01b0383166127cf57604051634a1406b160e11b815260006004820152602401611a61565b6001600160a01b0380851660009081526001602090815260408083209387168352929052208290558015611bbe57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161284291815260200190565b60405180910390a350505050565b604080516001600160a01b0319841660208201528151600c818303018152602c909101909152829081906001600160a01b038a1661289c5761289789898989878987611de8565b610b63565b6001600160a01b0389166128b9576128978a8989898789876121fb565b610b638a8a8a8a8a888a88611e3e565b6001600160a01b0383166128f45780600260008282546128e99190615920565b909155506129669050565b6001600160a01b038316600090815260208190526040902054818110156129475760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401611a61565b6001600160a01b03841660009081526020819052604090209082900390555b6001600160a01b038216612982576002805482900390556129a1565b6001600160a01b03821660009081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516129e691815260200190565b60405180910390a3505050565b6000826001600160a01b03168260405160006040518083038185875af1925050503d8060008114612a40576040519150601f19603f3d011682016040523d82523d6000602084013e612a45565b606091505b5050905080611c3b57604051630db2c7f160e31b815260040160405180910390fd5b6000806000612a7b8a8a8a8a8a8a8a6131c0565b9050612a8681611f9a565b612a928a8a8a8a6131fd565b9093509150612aa48a848b858a61326d565b5097509795505050505050565b612ab9612e62565b612ac2846126a3565b612ad66001600160a01b0384168383612e8c565b612adf836126a3565b611bbe6001600555565b6000606082806020019051810190612b0191906159f9565b90925090506000612b10610bdf565b905080825114612b3357604051632b477e7160e11b815260040160405180910390fd5b50915091565b600080612b4b8989898989898961341f565b60405161190160f01b8152600281019b909b5260228b015250506042909720979650505050505050565b61204082827f00000000000000000000000000000000000000000000000000000000000000006135b3565b6000612bab60025490565b905080600003612bba57505050565b82600003612bdb57604051632ab0223d60e21b815260040160405180910390fd5b6000612be5610bdf565b90506000805b82811015612ca5576000612bfe82611600565b6001600160a01b0381166000908152600a602052604081205491925090612c299060ff166012615ab7565b612c3490600a615bb7565b9050600081612c4284612347565b612c4c919061589b565b90506000670de0b6b3a7640000898681518110612c6b57612c6b61586f565b602002602001015183612c7e919061589b565b612c8891906158c8565b9050612c948187615920565b955050505050806001019050612beb565b50600083612cbb670de0b6b3a76400008461589b565b612cc591906158c8565b9050858103612cd657505050505050565b6000612710612ce6600a8961589b565b612cf091906158c8565b90506000878311612d0a57612d058389615bc6565b612d14565b612d148884615bc6565b9050818111156121f1576040516340ba9c2b60e11b815260040160405180910390fd5b600080612d42613677565b905060005b81811015612d90576000600f81612d5d84613681565b6001600160a01b0390811682526020820192909252604001600020541603612d885760009250505090565b600101612d47565b50600191505090565b6000806000612da78561368c565b915091506000612dcf866001600160a01b03166000908152600a602052604090205460ff1690565b612dda906012615ab7565b612de590600a615bb7565b90506000612df3828761589b565b90506000612e0284600a615bb7565b612e0c868461589b565b612e1691906158c8565b98975050505050505050565b6000612e35612e3060025490565b6136f8565b90506000670de0b6b3a7640000612e4c838661589b565b612e5691906158c8565b9050611bbe8184613783565b600260055403612e8557604051633ee5aeb560e01b815260040160405180910390fd5b6002600555565b6040516001600160a01b03838116602483015260448201839052611c3b91859182169063a9059cbb90606401611b77565b600080612ec8610bdf565b905087518114612eeb57604051632b477e7160e11b815260040160405180910390fd5b600080612ef785612ae9565b91509150612f2b7f00000000000000000000000000000000000000000000000000000000000000008c8c8c8c8c88886137c9565b9350612f378487612b75565b612f418282612ba0565b505050979650505050505050565b6000612f59612d37565b15612f62575060015b6000612f6c610bdf565b90506000805b82811015612fdd576000868281518110612f8e57612f8e61586f565b60200260200101511115612fd557612fc8612fa882611600565b878381518110612fba57612fba61586f565b6020026020010151866130bb565b612fd29083615920565b91505b600101612f72565b50821561269c5761269c8482612e22565b600080612ffb600b611d06565b90505b808210156120405761301761301283611600565b6126a3565b81613021816158ea565b925050612ffe565b60008260000182815481106130405761304061586f565b9060005260206000200154905092915050565b60008082121561307957604051635467221960e11b815260048101839052602401611a61565b5090565b6000806130908a8a8a8a8a8a8a8a6137db565b60405161190160f01b8152600281019c909c5260228c01525050604290982098975050505050505050565b6000806130c78561395d565b9050838110156130ea5760405163f8b3bb6160e01b815260040160405180910390fd5b82156130fd576130fa8582612d99565b91505b509392505050565b60018210156131275760405163abf20e8f60e01b815260040160405180910390fd5b6001600160a01b0383166000908152600d602052604090206001015415613161576040516329e8d8e960e11b815260040160405180910390fd5b6000604051806040016040528084603c61317b919061589b565b6131859042615920565b815260209081018490526001600160a01b0386166000908152600d82526040902082518155908201516001909101559050611bbe3083612544565b60006131f17f00000000000000000000000000000000000000000000000000000000000000008989898989896139e1565b90506125398183612b75565b60008061320986610bd2565b61322657604051630732619560e01b815260040160405180910390fd5b61322f85610bd2565b61324c57604051630732619560e01b815260040160405180910390fd5b6132558661395d565b9150613262848385613a20565b905094509492505050565b6132986040518060800160405280600081526020016000815260200160008152602001600081525090565b6001600160a01b03868116600081815260096020818152604080842054875294891683529081528382205485820152918152600a82528290205460c085901c9267ffffffffffffffff608087901c81169361ffff603089901c8116949189901c169288901c9091169061330f9060ff166012615ab7565b61331a90600a615bb7565b6040808801919091526001600160a01b038a166000908152600a60205220546133479060ff166012615ab7565b61335290600a615bb7565b606087015260408601516000906133ac9061336d908d61589b565b60408901518951899161337f9161589b565b878b606001518e613390919061589b565b8a8d606001518e602001516133a5919061589b565b8a8a613ac1565b9050806133cc5760405163473ab96d60e11b815260040160405180910390fd5b6001600160a01b038c81166000908152600f6020526040902054161580159061340e57506001600160a01b038a81166000908152600f60205260409020541615155b15611485576114858b8a8e8d613c76565b600080826040516020016134339190615bd9565b60405160208183030381529060405280519060200120905060405160200161353c907f5769746864726177616c537472756374286164647265737320746f6b656e5f6881527f6f6c6465722c75696e7432353620706f6f6c5f746f6b656e5f616d6f756e745f60208201527f746f5f6275726e2c616464726573732061737365745f616464726573732c756960408201527f6e743235362061737365745f616d6f756e742c75696e7432353620676f6f645f60608201527f756e74696c2c75696e74323536206c705f746f6b656e5f70726963652c75696e60808201527f743235365b5d207072696365732900000000000000000000000000000000000060a082015260ae0190565b60408051808303601f190181528282528051602091820120818401526001600160a01b039b8c1683830152606083019a909a529790991660808a015260a0890195909552505060c086019190915260e085015261010080850191909152815180850390910181526101209093019052815191012090565b60006135cd84846000015185602001518660400151613e12565b9050816001600160a01b0316816001600160a01b031614611bbe57613643843260405160200161361992919091825260601b6bffffffffffffffffffffffff1916602082015260340190565b60405160208183030381529060405280519060200120846000015185602001518660400151613e12565b9050816001600160a01b0316816001600160a01b031614611bbe576040516314cdc32360e31b815260040160405180910390fd5b6000610beb610bdf565b6000610b8382611600565b600080613697613e40565b6001600160a01b038084166000908152600f602090815260409182902082516060810184528154909416808552600182015492850183905260029091015460ff16928401929092526136e9919061246f565b92508060400151915050915091565b600080613703613677565b90506000805b8281101561374557600061371c82613681565b90506137308161372b83613f23565b612d99565b61373a9084615920565b925050600101613709565b508315613770578361375f670de0b6b3a76400008361589b565b61376991906158c8565b925061377c565b670de0b6b3a764000092505b5050919050565b600061271061379360148461589b565b61379d91906158c8565b90506137a98183615920565b831115611c3b576040516317427d6560e31b815260040160405180910390fd5b600080612b4b89898989898989613f41565b600080826040516020016137ef9190615bd9565b6040516020818303038152906040528051906020012090506040516020016138df907f53696e676c654465706f7369745374727563742861646472657373206465706f81527f7369746f722c6164647265737320746f6b656e2c75696e7432353620616d6f7560208201527f6e742c75696e74323536206c6f636b5f74696d652c75696e7432353620706f6f60408201527f6c5f746f6b656e732c75696e7432353620676f6f645f756e74696c2c75696e7460608201527f323536206c705f746f6b656e5f70726963652c75696e743235365b5d207072696080820152636365732960e01b60a082015260a40190565b60408051808303601f190181528282528051602091820120818401526001600160a01b039c8d16838301529a909b166060820152608081019890985260a0880196909652505060c085019290925260e08401526101008301526101208083019190915283518083039091018152610140909101909252815191012090565b6001600160a01b0381166000818152600960205260408082205490516370a0823160e01b8152306004820152919290916370a0823190602401602060405180830381865afa1580156139b3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906139d79190615974565b610b839190615bc6565b6000806139f28888888888886140e1565b60405161190160f01b8152600281018b905260228101829052604290209091505b9998505050505050505050565b6000838303613a30575080610d50565b600084613a42856402540be40061589b565b613a4c91906158c8565b9050613a5c620f4240603261589b565b613a6b906402540be400615920565b8110613ab1576402540be40083613a86620f4240603261589b565b613a95906402540be400615920565b613a9f919061589b565b613aa991906158c8565b915050610d50565b6402540be400613a9f848361589b565b60008080806305f5e100613ad58c8e61589b565b613adf91906158c8565b90506000613af6613af08c8461589b565b87614220565b90508015613b285780613b1183670de0b6b3a764000061589b565b613b1b91906158c8565b613b259085615920565b93505b60006305f5e100613b398a8c61589b565b613b4391906158c8565b90506000613b5a613b548a8461589b565b89614220565b90508015613b8c5780613b7583670de0b6b3a764000061589b565b613b7f91906158c8565b613b899087615920565b95505b5050505060006305f5e1008d8c613ba39190615920565b613bad908e61589b565b613bb791906158c8565b90506000613bc8613af08c8461589b565b90508015613bfa5780613be383670de0b6b3a764000061589b565b613bed91906158c8565b613bf79084615920565b92505b60006305f5e100613c0b8c8b615bc6565b613c15908c61589b565b613c1f91906158c8565b90506000613c30613b548a8461589b565b90508015613c625780613c4b83670de0b6b3a764000061589b565b613c5591906158c8565b613c5f9086615920565b94505b50505091109b9a5050505050505050505050565b600080613c828461368c565b91509150600080613c928561368c565b91509150613cc16040518060800160405280600081526020016000815260200160008152602001600081525090565b6001600160a01b0387166000908152600a602052604090205460ff16613ce8906012615ab7565b613cf390600a615bb7565b6040820152613d1a866001600160a01b03166000908152600a602052604090205460ff1690565b613d25906012615ab7565b613d3090600a615bb7565b60608201526040810151613d44908a61589b565b81526000613d53856012615ab7565b613d5e90600a615bb7565b613d68908761589b565b90506000613d77846012615ab7565b613d8290600a615bb7565b613d8c908661589b565b90506000836060015182848660000151613da6919061589b565b613db091906158c8565b613dba91906158c8565b90506000612710613dcc60c882615920565b613dd6908461589b565b613de091906158c8565b9050808c1115613e0357604051630d6974bb60e31b815260040160405180910390fd5b50505050505050505050505050565b600080600080613e2488888888614299565b925092509250613e348282614368565b50909695505050505050565b600e546001600160a01b0316613e5257565b600080600e60009054906101000a90046001600160a01b03166001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa158015613ea8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613ecc91906159a7565b5050925092505081600014613ef35760405162032b3d60e81b815260040160405180910390fd5b6000613eff8242615bc6565b9050610e108111611c3b5760405163d15f73b560e01b815260040160405180910390fd5b6001600160a01b038116600090815260096020526040812054610b83565b60008087604051602001613f559190615bd9565b604051602081830303815290604052805190602001209050600083604051602001613f809190615bd9565b604051602081830303815290604052805190602001209050604051602001614063907f4465706f7369745374727563742861646472657373206465706f7369746f722c81527f75696e743235365b5d206465706f7369745f616d6f756e74732c75696e74323560208201527f36206c6f636b5f74696d652c75696e7432353620706f6f6c5f746f6b656e732c60408201527f75696e7432353620676f6f645f756e74696c2c75696e74323536206c705f746f60608201527f6b656e5f70726963652c75696e743235365b5d207072696365732900000000006080820152609b0190565b60408051601f198184030181528282528051602091820120908301526001600160a01b038c1690820152606081018390526080810189905260a0810188905260c0810187905260e081018690526101008101829052610120016040516020818303038152906040528051906020012092505050979650505050505050565b60006040516020016141ae907f4f66666572537472756374286164647265737320696e7075745f746f6b656e2c81527f61646472657373206f75747075745f746f6b656e2c75696e7432353620696e7060208201527f75745f616d6f756e742c75696e74323536206f75747075745f616d6f756e742c60408201527f75696e7432353620676f6f645f756e74696c2c6164647265737320646573746960608201527f6e6174696f6e5f616464726573732900000000000000000000000000000000006080820152608f0190565b60408051808303601f190181528282528051602091820120818401526001600160a01b03998a16838301529789166060830152608082019690965260a08101949094525060c083019190915290931660e080850191909152815180850390910181526101009093019052815191012090565b60008260000361423257506000610b83565b60006142486142436110b786614421565b61444e565b90506000614274670de0b6b3a764000061426e846142686110b789614421565b906145bc565b9061467a565b905060006142846110b783614727565b905061428f81613053565b9350505050610b83565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156142d4575060009150600390508261435e565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015614328573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166143545750600092506001915082905061435e565b9250600091508190505b9450945094915050565b600082600381111561437c5761437c615c0f565b03614385575050565b600182600381111561439957614399615c0f565b036143b75760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156143cb576143cb615c0f565b036143ec5760405163fce698f760e01b815260048101829052602401611a61565b600382600381111561440057614400615c0f565b03612040576040516335e2f38360e21b815260048101829052602401611a61565b60006001600160ff1b038211156130795760405163123baf0360e11b815260048101839052602401611a61565b6000818181136144745760405163059b101b60e01b815260048101849052602401611a61565b6000670de0b6b3a7640000821261448d575060016144b3565b50600019816ec097ce7bc90715b34b9f1000000000816144af576144af6158b2565b0591505b600061453f670de0b6b3a7640000840560016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810283821d670de0b6b3a763ffff19810161456757818402612539565b671bc16d674ec800006706f05b59d3b200005b60008113156145ad57670de0b6b3a76400008380020592508183126145a5579283019260019290921d915b60011d61457a565b50505091909102949350505050565b60008282600160ff1b8214806145d55750600160ff1b81145b156145f35760405163a6070c2560e01b815260040160405180910390fd5b600080600084126146045783614609565b836000035b915060008312614619578261461e565b826000035b9050600061462c83836147de565b90506001600160ff1b038111156146605760405163120b5b4360e01b81526004810189905260248101889052604401611a61565b60001985851813613a1381614676578260000390565b8290565b60008282600160ff1b8214806146935750600160ff1b81145b156146b1576040516309fe2b4560e41b815260040160405180910390fd5b600080600084126146c257836146c7565b836000035b9150600083126146d757826146dc565b826000035b905060006146f383670de0b6b3a764000084614894565b90506001600160ff1b038111156146605760405163d49c26b360e01b81526004810189905260248101889052604401611a61565b6000818181121561478d5768033dd1780914b971141981121561474d5750600092915050565b6147866147656110b76147608460000390565b614727565b6ec097ce7bc90715b34b9f100000000081614782576147826158b2565b0590565b91506147d8565b680a688906bd8affffff8113156147b957604051626c1a0560e31b815260048101849052602401611a61565b670de0b6b3a7640000604082901b056147d46110b782614968565b9250505b50919050565b60008080600019848609848602925082811083820303915050806000036148125750670de0b6b3a764000090049050610b83565b670de0b6b3a7640000811061484457604051635173648d60e01b81526004810186905260248101859052604401611a61565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b60008080600019858709858702925082811083820303915050806000036148ce578382816148c4576148c46158b2565b0492505050610d50565b8381106148ff57604051630c740aef60e31b8152600481018790526024810186905260448101859052606401611a61565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b7780000000000000000000000000000000000000000000000067ff00000000000000821615614a89576780000000000000008216156149b05768016a09e667f3bcc9090260401c5b6740000000000000008216156149cf576801306fe0a31b7152df0260401c5b6720000000000000008216156149ee576801172b83c7d517adce0260401c5b671000000000000000821615614a0d5768010b5586cf9890f62a0260401c5b670800000000000000821615614a2c576801059b0d31585743ae0260401c5b670400000000000000821615614a4b57680102c9a3e778060ee70260401c5b670200000000000000821615614a6a5768010163da9fb33356d80260401c5b670100000000000000821615614a8957680100b1afa5abcbed610260401c5b66ff000000000000821615614b88576680000000000000821615614ab65768010058c86da1c09ea20260401c5b6640000000000000821615614ad4576801002c605e2e8cec500260401c5b6620000000000000821615614af257680100162f3904051fa10260401c5b6610000000000000821615614b10576801000b175effdc76ba0260401c5b6608000000000000821615614b2e57680100058ba01fb9f96d0260401c5b6604000000000000821615614b4c5768010002c5cc37da94920260401c5b6602000000000000821615614b6a576801000162e525ee05470260401c5b6601000000000000821615614b885768010000b17255775c040260401c5b65ff0000000000821615614c7e5765800000000000821615614bb3576801000058b91b5bc9ae0260401c5b65400000000000821615614bd057680100002c5c89d5ec6d0260401c5b65200000000000821615614bed5768010000162e43f4f8310260401c5b65100000000000821615614c0a57680100000b1721bcfc9a0260401c5b65080000000000821615614c275768010000058b90cf1e6e0260401c5b65040000000000821615614c44576801000002c5c863b73f0260401c5b65020000000000821615614c6157680100000162e430e5a20260401c5b65010000000000821615614c7e576801000000b1721835510260401c5b64ff00000000821615614d6b57648000000000821615614ca757680100000058b90c0b490260401c5b644000000000821615614cc35768010000002c5c8601cc0260401c5b642000000000821615614cdf576801000000162e42fff00260401c5b641000000000821615614cfb5768010000000b17217fbb0260401c5b640800000000821615614d17576801000000058b90bfce0260401c5b640400000000821615614d3357680100000002c5c85fe30260401c5b640200000000821615614d4f5768010000000162e42ff10260401c5b640100000000821615614d6b57680100000000b17217f80260401c5b63ff000000821615614e4f576380000000821615614d925768010000000058b90bfc0260401c5b6340000000821615614dad576801000000002c5c85fe0260401c5b6320000000821615614dc857680100000000162e42ff0260401c5b6310000000821615614de3576801000000000b17217f0260401c5b6308000000821615614dfe57680100000000058b90c00260401c5b6304000000821615614e195768010000000002c5c8600260401c5b6302000000821615614e34576801000000000162e4300260401c5b6301000000821615614e4f5768010000000000b172180260401c5b62ff0000821615614f2a5762800000821615614e74576801000000000058b90c0260401c5b62400000821615614e8e57680100000000002c5c860260401c5b62200000821615614ea85768010000000000162e430260401c5b62100000821615614ec257680100000000000b17210260401c5b62080000821615614edc5768010000000000058b910260401c5b62040000821615614ef6576801000000000002c5c80260401c5b62020000821615614f1057680100000000000162e40260401c5b62010000821615614f2a576801000000000000b1720260401c5b61ff00821615614ffc57618000821615614f4d57680100000000000058b90260401c5b614000821615614f665768010000000000002c5d0260401c5b612000821615614f7f576801000000000000162e0260401c5b611000821615614f985768010000000000000b170260401c5b610800821615614fb1576801000000000000058c0260401c5b610400821615614fca57680100000000000002c60260401c5b610200821615614fe357680100000000000001630260401c5b610100821615614ffc57680100000000000000b10260401c5b60ff8216156150c557608082161561501d57680100000000000000590260401c5b6040821615615035576801000000000000002c0260401c5b602082161561504d57680100000000000000160260401c5b6010821615615065576801000000000000000b0260401c5b600882161561507d57680100000000000000060260401c5b600482161561509557680100000000000000030260401c5b60028216156150ad57680100000000000000010260401c5b60018216156150c557680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000815180845260005b81811015615102576020818501810151868301820152016150e6565b506000602082860101526020601f19601f83011685010191505092915050565b602081526000610d5060208301846150dc565b80356001600160a01b038116811461514c57600080fd5b919050565b6000606082840312156147d857600080fd5b60008083601f84011261517557600080fd5b50813567ffffffffffffffff81111561518d57600080fd5b6020830191508360208285010111156151a557600080fd5b9250929050565b600080600080600080600080610120898b0312156151c957600080fd5b6151d289615135565b9750602089013596506040890135955060608901359450608089013593506151fd8a60a08b01615151565b925061010089013567ffffffffffffffff81111561521a57600080fd5b6152268b828c01615163565b999c989b5096995094979396929594505050565b6000806040838503121561524d57600080fd5b61525683615135565b946020939093013593505050565b60008060008060008060c0878903121561527d57600080fd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b6000602082840312156152b957600080fd5b610d5082615135565b6060808252845190820181905260009060208601906080840190835b818110156152fc5783518352602093840193909201916001016152de565b50508381036020808601919091528651808352918101925086019060005b818110156153415782516001600160a01b031684526020938401939092019160010161531a565b505050604092909201929092529392505050565b60008060006060848603121561536a57600080fd5b61537384615135565b925061538160208501615135565b929592945050506040919091013590565b600080600080600080600080610120898b0312156153af57600080fd5b6153b889615135565b97506020890135965060408901359550606089013594506153db60808a01615135565b93506151fd8a60a08b01615151565b60008060008060008060008060006101408a8c03121561540957600080fd5b6154128a615135565b985061542060208b01615135565b975060408a0135965060608a0135955060808a0135945061544360a08b01615135565b93506154528b60c08c01615151565b92506101208a013567ffffffffffffffff81111561546f57600080fd5b61547b8c828d01615163565b915080935050809150509295985092959850929598565b600080600080600080600080610120898b0312156154af57600080fd5b6154b889615135565b9750602089013596506154cd60408a01615135565b955060608901359450608089013593506151fd8a60a08b01615151565b6000602082840312156154fc57600080fd5b5035919050565b60008083601f84011261551557600080fd5b50813567ffffffffffffffff81111561552d57600080fd5b6020830191508360208260051b85010111156151a557600080fd5b60008060008060008060008060006101208a8c03121561556757600080fd5b6155708a615135565b985060208a013567ffffffffffffffff81111561558c57600080fd5b6155988c828d01615503565b90995097505060408a0135955060608a0135945060808a013593506155c08b60a08c01615151565b92506101008a013567ffffffffffffffff81111561546f57600080fd5b60008060008060008060008060006101408a8c0312156155fc57600080fd5b6156058a615135565b985061561360208b01615135565b975060408a0135965060608a0135955060808a0135945060a08a013593506154528b60c08c01615151565b600080600080600080600080610100898b03121561565b57600080fd5b883567ffffffffffffffff81111561567257600080fd5b61567e8b828c01615503565b9099509750506020890135955060408901359450606089013593506156a68a60808b01615151565b925060e089013567ffffffffffffffff81111561521a57600080fd5b60008060008060008060a087890312156156db57600080fd5b86359550602087013594506040870135935060608701359250608087013567ffffffffffffffff81111561570e57600080fd5b61571a89828a01615163565b979a9699509497509295939492505050565b6000806040838503121561573f57600080fd5b50508035926020909101359150565b6000806040838503121561576157600080fd5b61576a83615135565b915061577860208401615135565b90509250929050565b600181811c9082168061579557607f821691505b6020821081036147d857634e487b7160e01b600052602260045260246000fd5b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff811182821017156157f4576157f46157b5565b604052919050565b60ff81168114611a7357600080fd5b6000606082840312801561581e57600080fd5b506040516060810167ffffffffffffffff81118282101715615842576158426157b5565b6040528235615850816157fc565b8152602083810135908201526040928301359281019290925250919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b8082028115828204841417610b8357610b83615885565b634e487b7160e01b600052601260045260246000fd5b6000826158e557634e487b7160e01b600052601260045260246000fd5b500490565b6000600182016158fc576158fc615885565b5060010190565b60006020828403121561591557600080fd5b8151610d50816157fc565b80820180821115610b8357610b83615885565b60ff8181168382160190811115610b8357610b83615885565b83815282602082015260606040820152600061596b60608301846150dc565b95945050505050565b60006020828403121561598657600080fd5b5051919050565b805169ffffffffffffffffffff8116811461514c57600080fd5b600080600080600060a086880312156159bf57600080fd5b6159c88661598d565b602087015160408801516060890151929750909550935091506159ed6080870161598d565b90509295509295909350565b60008060408385031215615a0c57600080fd5b8251602084015190925067ffffffffffffffff811115615a2b57600080fd5b8301601f81018513615a3c57600080fd5b805167ffffffffffffffff811115615a5657615a566157b5565b8060051b615a66602082016157cb565b91825260208184018101929081019088841115615a8257600080fd5b6020850194505b83851015615aa857845180835260209586019590935090910190615a89565b80955050505050509250929050565b60ff8281168282160390811115610b8357610b83615885565b6001815b6001841115615b0b57808504811115615aef57615aef615885565b6001841615615afd57908102905b60019390931c928002615ad4565b935093915050565b600082615b2257506001610b83565b81615b2f57506000610b83565b8160018114615b455760028114615b4f57615b6b565b6001915050610b83565b60ff841115615b6057615b60615885565b50506001821b610b83565b5060208310610133831016604e8410600b8410161715615b8e575081810a610b83565b615b9b6000198484615ad0565b8060001904821115615baf57615baf615885565b029392505050565b6000610d5060ff841683615b13565b81810381811115610b8357610b83615885565b8151600090829060208501835b82811015615c04578151845260209384019390910190600101615be6565b509195945050505050565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220934a1d9a423aa150a2aba40cc46c732a188ea43bba4b7c2983ce68bf5989642464736f6c634300081c003300000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f8000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab6200000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000000000000000000000180000000000000000000000000a372e7f8ba1f0377667c8c52fea2bc3e271a0e680000000000000000000000000000000000000000000000000000000000000002000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62000000000000000000000000b24e3035d1fcbc0e43cf3143c3fd92e53df2009b00000000000000000000000000000000000000000000000000000000000000020000000000000000000000007bdbdb772f4a073badd676a567c6ed82049a8eee000000000000000000000000f6630799b5387e0e9ace92a5e82673021781b44000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000e100000000000000000000000000000000000000000000000000000000000000e10

Deployed Bytecode

0x60806040526004361061032d5760003560e01c806370a08231116101a5578063b8f44963116100ec578063d9bd8ba411610095578063eb1c64531161006f578063eb1c64531461098e578063ecc7633d146109ae578063f2fde38b146109db578063fdc85fc4146109fb57600080fd5b8063d9bd8ba414610908578063da5014c514610928578063dd62ed3e1461094857600080fd5b8063c4828729116100c6578063c4828729146108a8578063c72da66a146108c8578063ceaf4339146108e857600080fd5b8063b8f44963146107b9578063bfdb6b04146107d9578063c325a5491461085f57600080fd5b80638dda8f3f1161014e578063a726470511610128578063a726470514610766578063a7d46c2f14610786578063a9059cbb1461079957600080fd5b80638dda8f3f146106fd57806392a91a3a1461073157806395d89b411461075157600080fd5b80638414efe51161017f5780638414efe5146106b45780638baeefce146106ca5780638da5cb5b146106df57600080fd5b806370a0823114610654578063715018a61461068a578063780dd6641461069f57600080fd5b80632e7e1bd3116102745780633b26e4eb1161021d5780635aecdda5116101f75780635aecdda5146105c25780635b6f4dce1461060e578063608de8aa1461062157806365cd6db01461064157600080fd5b80633b26e4eb1461056f5780634372328a1461058f5780634cb6864c146105a257600080fd5b806334cb3d7f1161024e57806334cb3d7f14610504578063368dfc181461053a578063377a368c1461055a57600080fd5b80632e7e1bd3146104b3578063313ce567146104c8578063343add83146104e457600080fd5b80631b6a8759116102d657806326d9b5b3116102b057806326d9b5b31461046157806327a9b424146104805780632b651a6c1461049357600080fd5b80631b6a8759146104085780631dc6f5a51461041d57806323b872dd1461044157600080fd5b80630ce9a63d116103075780630ce9a63d146103b657806318160ddd146103c957806319f37361146103e857600080fd5b806306fdde0314610339578063078795ee14610364578063095ea7b31461038657600080fd5b3661033457005b600080fd5b34801561034557600080fd5b5061034e610a1b565b60405161035b9190615122565b60405180910390f35b34801561037057600080fd5b5061038461037f3660046151ac565b610aad565b005b34801561039257600080fd5b506103a66103a136600461523a565b610b6f565b604051901515815260200161035b565b6103846103c4366004615264565b610b89565b3480156103d557600080fd5b506002545b60405190815260200161035b565b3480156103f457600080fd5b506103a66104033660046152a7565b610bd2565b34801561041457600080fd5b506103da610bdf565b34801561042957600080fd5b50610432610bf0565b60405161035b939291906152c2565b34801561044d57600080fd5b506103a661045c366004615355565b610d31565b34801561046d57600080fd5b50600854600160a01b900460ff166103a6565b61038461048e366004615392565b610d57565b34801561049f57600080fd5b506103846104ae3660046153ea565b610de5565b3480156104bf57600080fd5b50610384610e69565b3480156104d457600080fd5b506040516012815260200161035b565b3480156104f057600080fd5b506103846104ff366004615492565b610eab565b34801561051057600080fd5b506103da61051f3660046152a7565b6001600160a01b031660009081526009602052604090205490565b34801561054657600080fd5b506103846105553660046154ea565b610fec565b34801561056657600080fd5b506103da611064565b34801561057b57600080fd5b5061038461058a3660046153ea565b6110ba565b61038461059d366004615548565b6110ff565b3480156105ae57600080fd5b506103846105bd366004615392565b6111e1565b3480156105ce57600080fd5b506105f67f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab6281565b6040516001600160a01b03909116815260200161035b565b61038461061c3660046155dd565b611264565b34801561062d57600080fd5b5061038461063c36600461563e565b6112c9565b61038461064f3660046156c2565b611347565b34801561066057600080fd5b506103da61066f3660046152a7565b6001600160a01b031660009081526020819052604090205490565b34801561069657600080fd5b50610384611493565b3480156106ab57600080fd5b506104326114a7565b3480156106c057600080fd5b506103da60075481565b3480156106d657600080fd5b506103846115b8565b3480156106eb57600080fd5b506006546001600160a01b03166105f6565b34801561070957600080fd5b506105f67f00000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f881565b34801561073d57600080fd5b506105f661074c3660046154ea565b611600565b34801561075d57600080fd5b5061034e61160d565b34801561077257600080fd5b50600e546105f6906001600160a01b031681565b610384610794366004615264565b61161c565b3480156107a557600080fd5b506103a66107b436600461523a565b61165c565b3480156107c557600080fd5b506103846107d43660046152a7565b61166a565b3480156107e557600080fd5b506108406107f43660046152a7565b6001600160a01b039081166000908152600f602090815260409182902082516060810184528154909416808552600182015492850183905260029091015460ff16939092019290925291565b604080516001600160a01b03909316835260208301919091520161035b565b34801561086b57600080fd5b5061089361087a3660046152a7565b600d602052600090815260409020805460019091015482565b6040805192835260208301919091520161035b565b3480156108b457600080fd5b506103846108c3366004615355565b6116cf565b3480156108d457600080fd5b506103846108e3366004615392565b611869565b3480156108f457600080fd5b506103846109033660046152a7565b6118ae565b34801561091457600080fd5b5061038461092336600461572c565b611900565b34801561093457600080fd5b506008546105f6906001600160a01b031681565b34801561095457600080fd5b506103da61096336600461574e565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b34801561099a57600080fd5b506103a66109a93660046152a7565b611a03565b3480156109ba57600080fd5b506103da6109c93660046152a7565b60096020526000908152604090205481565b3480156109e757600080fd5b506103846109f63660046152a7565b611a33565b348015610a0757600080fd5b50610384610a163660046152a7565b611a76565b606060038054610a2a90615781565b80601f0160208091040260200160405190810160405280929190818152602001828054610a5690615781565b8015610aa35780601f10610a7857610100808354040283529160200191610aa3565b820191906000526020600020905b815481529060010190602001808311610a8657829003601f168201915b5050505050905090565b610ab5611b17565b8342811015610ad757604051639a29b6fb60e01b815260040160405180910390fd5b866001811015610afa5760405163abf20e8f60e01b815260040160405180910390fd5b610b0f6001600160a01b038b1633308c611b42565b610b63338b8b8b8b8b610b27368d90038d018d61580b565b8b8b8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611bc492505050565b50505050505050505050565b600033610b7d818585611c2e565b60019150505b92915050565b610b91611b17565b8363ffffffff1642811015610bb957604051639a29b6fb60e01b815260040160405180910390fd5b610bc98787878787876001611c40565b50505050505050565b6000610b83600b83611ce4565b6000610beb600b611d06565b905090565b606080600080610bfe610bdf565b905060008167ffffffffffffffff811115610c1b57610c1b6157b5565b604051908082528060200260200182016040528015610c44578160200160208202803683370190505b50905060008267ffffffffffffffff811115610c6257610c626157b5565b604051908082528060200260200182016040528015610c8b578160200160208202803683370190505b50905060005b83811015610d17576000610ca482611600565b9050610cc5816001600160a01b031660009081526009602052604090205490565b848381518110610cd757610cd761586f565b60200260200101818152505080838381518110610cf657610cf661586f565b6001600160a01b039092166020928302919091019091015250600101610c91565b508181610d2360025490565b955095509550505050909192565b600033610d3f858285611d10565b610d4a858585611d89565b60019150505b9392505050565b610d5f611b17565b8463ffffffff1642811015610d8757604051639a29b6fb60e01b815260040160405180910390fd5b610dda8989898989610d9e368b90038b018b61580b565b89898080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611de892505050565b505050505050505050565b610ded611b17565b8463ffffffff1642811015610e1557604051639a29b6fb60e01b815260040160405180910390fd5b610b638a8a8a8a8a8a610e2d368c90038c018c61580b565b8a8a8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611e3e92505050565b610e71611ec5565b6008805460ff60a01b1916905560405133907f542e2be6bf739156fc5d022ffac81c0c9b281c19e6491b63bb14281433138b1790600090a2565b610eb3611b17565b87336001600160a01b03821614610edd57604051635c427cd960e01b815260040160405180910390fd5b8442811015610eff57604051639a29b6fb60e01b815260040160405180910390fd5b60006001600160a01b038916610f3657507f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62975060015b6000610f488c8c8c8c8c8c8c8c611ef0565b9050610f5381611f9a565b610f5e8a8a8d611fe5565b610f68338c61200a565b8115610f7d57610f78338a612044565b610f88565b610f888a338b612103565b896001600160a01b03168c6001600160a01b03167f41e79959bad1d45680578f8a544fb5af76d72b04090e65a51b4d0eaab959a9ab8d8c604051610fd6929190918252602082015260400190565b60405180910390a3505050505050505050505050565b6000610ff760025490565b611006836402540be40061589b565b61101091906158c8565b905061101c338361200a565b61102581612132565b604080518381526020810183905233917f92ccf450a286a957af52509bc1c9939d1a6a481783e142e41e2499f0bb66ebc6910160405180910390a25050565b600061106f33611a03565b61108c5760405163bb1c8b6560e01b815260040160405180910390fd5b50336000818152600d602052604081206001810180549183905591909155906110b790309083611d89565b90565b6110c2611b17565b8463ffffffff16428110156110ea57604051639a29b6fb60e01b815260040160405180910390fd5b610e156001600160a01b038b1633308b611b42565b611107611b17565b834281101561112957604051639a29b6fb60e01b815260040160405180910390fd5b86600181101561114c5760405163abf20e8f60e01b815260040160405180910390fd5b6111d48b8b8b808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152508d92508c91508b9050611198368c90038c018c61580b565b8a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506121b092505050565b5050505050505050505050565b6111e9611b17565b8463ffffffff164281101561121157604051639a29b6fb60e01b815260040160405180910390fd5b610dda8989898989611228368b90038b018b61580b565b89898080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506121fb92505050565b61126c611b17565b834281101561128e57604051639a29b6fb60e01b815260040160405180910390fd5b8660018110156112b15760405163abf20e8f60e01b815260040160405180910390fd5b6111d48b8b8b8b8b8b610b27368d90038d018d61580b565b6112d1611b17565b6000875b808210156113365760008a8a848181106112f1576112f161586f565b90506020020135905060008111156113235761132333308361131287611600565b6001600160a01b0316929190611b42565b8261132d816158ea565b935050506112d5565b610b63338b8b8b8b8b8b8b8b6110ff565b61134f611b17565b608085901c6bffffffffffffffffffffffff602087901c1662ffffff600888901c164282101561139257604051639a29b6fb60e01b815260040160405180910390fd5b60018110156113b45760405163abf20e8f60e01b815260040160405180910390fd5b6040805160608082018352600080835260208084018290529284018190528351918201845260ff8c1682529181018a905291820188905260a08b901c908b906001600160a01b038216611429577f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62915061143e565b61143e6001600160a01b038316333086611b42565b50611485338284878a8a898f8f8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250611bc492505050565b505050505050505050505050565b61149b6122c8565b6114a560006122f5565b565b6060806000806114b5610bdf565b905060008167ffffffffffffffff8111156114d2576114d26157b5565b6040519080825280602002602001820160405280156114fb578160200160208202803683370190505b50905060008267ffffffffffffffff811115611519576115196157b5565b604051908082528060200260200182016040528015611542578160200160208202803683370190505b50905060005b83811015610d1757600061155b82611600565b905061156681612347565b8483815181106115785761157861586f565b602002602001018181525050808383815181106115975761159761586f565b6001600160a01b039092166020928302919091019091015250600101611548565b6115c0611ec5565b6008805460ff60a01b1916600160a01b17905560405133907fcabe820ce05cacdbb20404e8bba2a9cbadaa7ff6e3a3294b6d5152526765942090600090a2565b6000610b83600b836123b2565b606060048054610a2a90615781565b611624611b17565b8363ffffffff164281101561164c57604051639a29b6fb60e01b815260040160405180910390fd5b610bc98787878787876000611c40565b600033610b7d818585611d89565b6116726122c8565b61167b816123be565b600e80546001600160a01b0319166001600160a01b0383169081179091556040519081527f33fa9d54e48b14392fffa8aa3cfec14c54552fa92d5f44048005ec6437ee97649060200160405180910390a150565b6116d76122c8565b600081116116f857604051639589a27d60e01b815260040160405180910390fd5b61170183612464565b61171e57604051630732619560e01b815260040160405180910390fd5b600061172a838361246f565b90506000811161174d57604051639589a27d60e01b815260040160405180910390fd5b6040518060600160405280846001600160a01b03168152602001838152602001846001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa1580156117ab573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906117cf9190615903565b60ff9081169091526001600160a01b038681166000818152600f6020908152604091829020865181546001600160a01b031916908616178155868201516001820155958201516002909601805460ff19169690951695909517909355825191871682529281018590527fc9c48c8a3a63b9d481d1f1dc5a7ca531d0fe9ddfd25f00f6c91090175f7b0053910160405180910390a250505050565b611871611b17565b8463ffffffff164281101561189957604051639a29b6fb60e01b815260040160405180910390fd5b6112116001600160a01b038a1633308b611b42565b6118b66122c8565b600880546001600160a01b0319166001600160a01b0383169081179091556040517f7fb818801719b0f482b3e69a97fd8c5a1bddd186808ae2a83bdf1dac62c550ec90600090a250565b6119086122c8565b60008161191a846402540be40061589b565b61192491906158c8565b905061193660146402540be4006158c8565b8111156119565760405163051fb32160e01b815260040160405180910390fd5b62093a806007546119679190615920565b42101561198757604051637bd0a7dd60e01b815260040160405180910390fd5b4260075560006402540be40061199c60025490565b6119a6908461589b565b6119b091906158c8565b90506119bc3382612544565b60408051858152602081018590529081018290527f26092d07f0187f928cdea6737c0e6d7496aea7e4d4fb32daf1ccd48793ce0b8e9060600160405180910390a150505050565b6001600160a01b0381166000908152600d60205260408120600181015415801590610d5057505442101592915050565b611a3b6122c8565b6001600160a01b038116611a6a57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b611a73816122f5565b50565b611a7e6122c8565b6001600160a01b038181166000908152600f602052604090205416611ab657604051633e1e538160e21b815260040160405180910390fd5b6001600160a01b0381166000818152600f602052604080822080546001600160a01b031916815560018101839055600201805460ff19169055517f9c8e7d83025bef8a04c664b2f753f64b8814bdb7e27291d7e50935f18cc3c7129190a250565b600854600160a01b900460ff16156114a5576040516326f4363f60e21b815260040160405180910390fd5b6040516001600160a01b038481166024830152838116604483015260648201839052611bbe9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505061257a565b50505050565b611bcd87610bd2565b611bea57604051630732619560e01b815260040160405180910390fd5b611bf26125eb565b6000611c04898989898989898961261b565b9050611c0f81611f9a565b611c1a88888761266a565b611c23886126a3565b610dda898787612727565b611c3b838383600161277b565b505050565b6040805160608101825260008082526020820181905291810182905260a089811c928a92918a901c918a916001600160ff1b03881690611c8560ff8a901c601b615933565b6040805160608101825260ff9092168252602082018c9052810192909252509050858015611cbb57506001600160a01b03841615155b15611cd557611cd56001600160a01b038516333088611b42565b611485848387868e8e87612850565b6001600160a01b03811660009081526001830160205260408120541515610d50565b6000610b83825490565b6001600160a01b03838116600090815260016020908152604080832093861683529290522054600019811015611bbe5781811015611d7a57604051637dc7a0d960e11b81526001600160a01b03841660048201526024810182905260448101839052606401611a61565b611bbe8484848403600061277b565b6001600160a01b038316611db357604051634b637e8f60e11b815260006004820152602401611a61565b6001600160a01b038216611ddd5760405163ec442f0560e01b815260006004820152602401611a61565b611c3b8383836128c9565b611e127f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62876129f3565b610bc97f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62888888888888885b600080611e508a8a8a8a8a8a8a612a67565b91509150611e608a8a8784612ab1565b846001600160a01b0316896001600160a01b03168b6001600160a01b03167f4be05c8d54f5e056ab2cfa033e9f582057001268c3e28561bb999d35d2c8f2c8858588604051611eb19392919061594c565b60405180910390a450505050505050505050565b6008546001600160a01b031633146114a557604051635c427cd960e01b815260040160405180910390fd5b6000806000611f3485858080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250612ae992505050565b91509150611f687f597a4374bafbb595c980a613ed1b42b24b82bad0156856dd6fe2e5f33e3081b38c8c8c8c8c8888612b39565b9250611f8283611f7d3689900389018961580b565b612b75565b611f8c8282612ba0565b505098975050505050505050565b60008181526010602052604090205460ff1615611fca576040516306542de760e11b815260040160405180910390fd5b6000908152601060205260409020805460ff19166001179055565b611fed612d37565b15611c3b576000611ffe8484612d99565b9050611bbe8183612e22565b6001600160a01b03821661203457604051634b637e8f60e11b815260006004820152602401611a61565b612040826000836128c9565b5050565b61204c612e62565b604051632e1a7d4d60e01b8152600481018290527f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626001600160a01b031690632e1a7d4d90602401600060405180830381600087803b1580156120ae57600080fd5b505af11580156120c2573d6000803e3d6000fd5b505050506120ef7f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626126a3565b6120f982826129f3565b6120406001600555565b61210b612e62565b61211f6001600160a01b0384168383612e8c565b612128836126a3565b611c3b6001600555565b600080600061213f610bdf565b90505b80821015611bbe57600061215583611600565b90506402540be40061217c826001600160a01b031660009081526009602052604090205490565b612186908761589b565b61219091906158c8565b935061219d813386612103565b826121a7816158ea565b93505050612142565b6121b86125eb565b60006121c988888888888888612ebd565b90506121d481611f9a565b6121de8786612f4f565b6121e6612fee565b6121f1888787612727565b5050505050505050565b60008061222d897f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab628a8a8a8a8a612a67565b9150915061223a896126a3565b6122448582612044565b846001600160a01b03167f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626001600160a01b03168a6001600160a01b03167f4be05c8d54f5e056ab2cfa033e9f582057001268c3e28561bb999d35d2c8f2c88585886040516122b59392919061594c565b60405180910390a4505050505050505050565b6006546001600160a01b031633146114a55760405163118cdaa760e01b8152336004820152602401611a61565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6040516370a0823160e01b81523060048201526000906001600160a01b038316906370a0823190602401602060405180830381865afa15801561238e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b839190615974565b6000610d508383613029565b6001600160a01b0381166123e557604051631c06ca6760e01b815260040160405180910390fd5b806001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa92505050801561243f575060408051601f3d908101601f1916820190925261243c918101906159a7565b60015b61245c57604051631c06ca6760e01b815260040160405180910390fd5b505050505050565b6000610b8382610bd2565b6000806000806000866001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa1580156124b5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906124d991906159a7565b9450945050935093508069ffffffffffffffffffff168469ffffffffffffffffffff1614158061251257504261250f8784615920565b11155b156125305760405163a9f7344560e01b815260040160405180910390fd5b61253983613053565b979650505050505050565b6001600160a01b03821661256e5760405163ec442f0560e01b815260006004820152602401611a61565b612040600083836128c9565b600080602060008451602086016000885af18061259d576040513d6000823e3d81fd5b50506000513d915081156125b55780600114156125c2565b6001600160a01b0384163b155b15611bbe57604051635274afe760e01b81526001600160a01b0385166004820152602401611a61565b34156114a5576114a57f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62346129f3565b600080600061262984612ae9565b9150915061265e7f597a4374bafbb595c980a613ed1b42b24b82bad0156856dd6fe2e5f33e3081b38c8c8c8c8c8c898961307d565b9250611f828386612b75565b6000612674612d37565b1561267d575060015b600061268a8585846130bb565b9050811561269c5761269c8382612e22565b5050505050565b6040516370a0823160e01b81523060048201526001600160a01b038216906370a0823190602401602060405180830381865afa1580156126e7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061270b9190615974565b6001600160a01b03909116600090815260096020526040902055565b612732838383613105565b60408051828152602081018490526001600160a01b038516917f73a19dd210f1a7f902193214c0ee91dd35ee5b4d920cba8d519eca65a7b488ca910160405180910390a2505050565b6001600160a01b0384166127a55760405163e602df0560e01b815260006004820152602401611a61565b6001600160a01b0383166127cf57604051634a1406b160e11b815260006004820152602401611a61565b6001600160a01b0380851660009081526001602090815260408083209387168352929052208290558015611bbe57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161284291815260200190565b60405180910390a350505050565b604080516001600160a01b0319841660208201528151600c818303018152602c909101909152829081906001600160a01b038a1661289c5761289789898989878987611de8565b610b63565b6001600160a01b0389166128b9576128978a8989898789876121fb565b610b638a8a8a8a8a888a88611e3e565b6001600160a01b0383166128f45780600260008282546128e99190615920565b909155506129669050565b6001600160a01b038316600090815260208190526040902054818110156129475760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401611a61565b6001600160a01b03841660009081526020819052604090209082900390555b6001600160a01b038216612982576002805482900390556129a1565b6001600160a01b03821660009081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516129e691815260200190565b60405180910390a3505050565b6000826001600160a01b03168260405160006040518083038185875af1925050503d8060008114612a40576040519150601f19603f3d011682016040523d82523d6000602084013e612a45565b606091505b5050905080611c3b57604051630db2c7f160e31b815260040160405180910390fd5b6000806000612a7b8a8a8a8a8a8a8a6131c0565b9050612a8681611f9a565b612a928a8a8a8a6131fd565b9093509150612aa48a848b858a61326d565b5097509795505050505050565b612ab9612e62565b612ac2846126a3565b612ad66001600160a01b0384168383612e8c565b612adf836126a3565b611bbe6001600555565b6000606082806020019051810190612b0191906159f9565b90925090506000612b10610bdf565b905080825114612b3357604051632b477e7160e11b815260040160405180910390fd5b50915091565b600080612b4b8989898989898961341f565b60405161190160f01b8152600281019b909b5260228b015250506042909720979650505050505050565b61204082827f00000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f86135b3565b6000612bab60025490565b905080600003612bba57505050565b82600003612bdb57604051632ab0223d60e21b815260040160405180910390fd5b6000612be5610bdf565b90506000805b82811015612ca5576000612bfe82611600565b6001600160a01b0381166000908152600a602052604081205491925090612c299060ff166012615ab7565b612c3490600a615bb7565b9050600081612c4284612347565b612c4c919061589b565b90506000670de0b6b3a7640000898681518110612c6b57612c6b61586f565b602002602001015183612c7e919061589b565b612c8891906158c8565b9050612c948187615920565b955050505050806001019050612beb565b50600083612cbb670de0b6b3a76400008461589b565b612cc591906158c8565b9050858103612cd657505050505050565b6000612710612ce6600a8961589b565b612cf091906158c8565b90506000878311612d0a57612d058389615bc6565b612d14565b612d148884615bc6565b9050818111156121f1576040516340ba9c2b60e11b815260040160405180910390fd5b600080612d42613677565b905060005b81811015612d90576000600f81612d5d84613681565b6001600160a01b0390811682526020820192909252604001600020541603612d885760009250505090565b600101612d47565b50600191505090565b6000806000612da78561368c565b915091506000612dcf866001600160a01b03166000908152600a602052604090205460ff1690565b612dda906012615ab7565b612de590600a615bb7565b90506000612df3828761589b565b90506000612e0284600a615bb7565b612e0c868461589b565b612e1691906158c8565b98975050505050505050565b6000612e35612e3060025490565b6136f8565b90506000670de0b6b3a7640000612e4c838661589b565b612e5691906158c8565b9050611bbe8184613783565b600260055403612e8557604051633ee5aeb560e01b815260040160405180910390fd5b6002600555565b6040516001600160a01b03838116602483015260448201839052611c3b91859182169063a9059cbb90606401611b77565b600080612ec8610bdf565b905087518114612eeb57604051632b477e7160e11b815260040160405180910390fd5b600080612ef785612ae9565b91509150612f2b7f597a4374bafbb595c980a613ed1b42b24b82bad0156856dd6fe2e5f33e3081b38c8c8c8c8c88886137c9565b9350612f378487612b75565b612f418282612ba0565b505050979650505050505050565b6000612f59612d37565b15612f62575060015b6000612f6c610bdf565b90506000805b82811015612fdd576000868281518110612f8e57612f8e61586f565b60200260200101511115612fd557612fc8612fa882611600565b878381518110612fba57612fba61586f565b6020026020010151866130bb565b612fd29083615920565b91505b600101612f72565b50821561269c5761269c8482612e22565b600080612ffb600b611d06565b90505b808210156120405761301761301283611600565b6126a3565b81613021816158ea565b925050612ffe565b60008260000182815481106130405761304061586f565b9060005260206000200154905092915050565b60008082121561307957604051635467221960e11b815260048101839052602401611a61565b5090565b6000806130908a8a8a8a8a8a8a8a6137db565b60405161190160f01b8152600281019c909c5260228c01525050604290982098975050505050505050565b6000806130c78561395d565b9050838110156130ea5760405163f8b3bb6160e01b815260040160405180910390fd5b82156130fd576130fa8582612d99565b91505b509392505050565b60018210156131275760405163abf20e8f60e01b815260040160405180910390fd5b6001600160a01b0383166000908152600d602052604090206001015415613161576040516329e8d8e960e11b815260040160405180910390fd5b6000604051806040016040528084603c61317b919061589b565b6131859042615920565b815260209081018490526001600160a01b0386166000908152600d82526040902082518155908201516001909101559050611bbe3083612544565b60006131f17f597a4374bafbb595c980a613ed1b42b24b82bad0156856dd6fe2e5f33e3081b38989898989896139e1565b90506125398183612b75565b60008061320986610bd2565b61322657604051630732619560e01b815260040160405180910390fd5b61322f85610bd2565b61324c57604051630732619560e01b815260040160405180910390fd5b6132558661395d565b9150613262848385613a20565b905094509492505050565b6132986040518060800160405280600081526020016000815260200160008152602001600081525090565b6001600160a01b03868116600081815260096020818152604080842054875294891683529081528382205485820152918152600a82528290205460c085901c9267ffffffffffffffff608087901c81169361ffff603089901c8116949189901c169288901c9091169061330f9060ff166012615ab7565b61331a90600a615bb7565b6040808801919091526001600160a01b038a166000908152600a60205220546133479060ff166012615ab7565b61335290600a615bb7565b606087015260408601516000906133ac9061336d908d61589b565b60408901518951899161337f9161589b565b878b606001518e613390919061589b565b8a8d606001518e602001516133a5919061589b565b8a8a613ac1565b9050806133cc5760405163473ab96d60e11b815260040160405180910390fd5b6001600160a01b038c81166000908152600f6020526040902054161580159061340e57506001600160a01b038a81166000908152600f60205260409020541615155b15611485576114858b8a8e8d613c76565b600080826040516020016134339190615bd9565b60405160208183030381529060405280519060200120905060405160200161353c907f5769746864726177616c537472756374286164647265737320746f6b656e5f6881527f6f6c6465722c75696e7432353620706f6f6c5f746f6b656e5f616d6f756e745f60208201527f746f5f6275726e2c616464726573732061737365745f616464726573732c756960408201527f6e743235362061737365745f616d6f756e742c75696e7432353620676f6f645f60608201527f756e74696c2c75696e74323536206c705f746f6b656e5f70726963652c75696e60808201527f743235365b5d207072696365732900000000000000000000000000000000000060a082015260ae0190565b60408051808303601f190181528282528051602091820120818401526001600160a01b039b8c1683830152606083019a909a529790991660808a015260a0890195909552505060c086019190915260e085015261010080850191909152815180850390910181526101209093019052815191012090565b60006135cd84846000015185602001518660400151613e12565b9050816001600160a01b0316816001600160a01b031614611bbe57613643843260405160200161361992919091825260601b6bffffffffffffffffffffffff1916602082015260340190565b60405160208183030381529060405280519060200120846000015185602001518660400151613e12565b9050816001600160a01b0316816001600160a01b031614611bbe576040516314cdc32360e31b815260040160405180910390fd5b6000610beb610bdf565b6000610b8382611600565b600080613697613e40565b6001600160a01b038084166000908152600f602090815260409182902082516060810184528154909416808552600182015492850183905260029091015460ff16928401929092526136e9919061246f565b92508060400151915050915091565b600080613703613677565b90506000805b8281101561374557600061371c82613681565b90506137308161372b83613f23565b612d99565b61373a9084615920565b925050600101613709565b508315613770578361375f670de0b6b3a76400008361589b565b61376991906158c8565b925061377c565b670de0b6b3a764000092505b5050919050565b600061271061379360148461589b565b61379d91906158c8565b90506137a98183615920565b831115611c3b576040516317427d6560e31b815260040160405180910390fd5b600080612b4b89898989898989613f41565b600080826040516020016137ef9190615bd9565b6040516020818303038152906040528051906020012090506040516020016138df907f53696e676c654465706f7369745374727563742861646472657373206465706f81527f7369746f722c6164647265737320746f6b656e2c75696e7432353620616d6f7560208201527f6e742c75696e74323536206c6f636b5f74696d652c75696e7432353620706f6f60408201527f6c5f746f6b656e732c75696e7432353620676f6f645f756e74696c2c75696e7460608201527f323536206c705f746f6b656e5f70726963652c75696e743235365b5d207072696080820152636365732960e01b60a082015260a40190565b60408051808303601f190181528282528051602091820120818401526001600160a01b039c8d16838301529a909b166060820152608081019890985260a0880196909652505060c085019290925260e08401526101008301526101208083019190915283518083039091018152610140909101909252815191012090565b6001600160a01b0381166000818152600960205260408082205490516370a0823160e01b8152306004820152919290916370a0823190602401602060405180830381865afa1580156139b3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906139d79190615974565b610b839190615bc6565b6000806139f28888888888886140e1565b60405161190160f01b8152600281018b905260228101829052604290209091505b9998505050505050505050565b6000838303613a30575080610d50565b600084613a42856402540be40061589b565b613a4c91906158c8565b9050613a5c620f4240603261589b565b613a6b906402540be400615920565b8110613ab1576402540be40083613a86620f4240603261589b565b613a95906402540be400615920565b613a9f919061589b565b613aa991906158c8565b915050610d50565b6402540be400613a9f848361589b565b60008080806305f5e100613ad58c8e61589b565b613adf91906158c8565b90506000613af6613af08c8461589b565b87614220565b90508015613b285780613b1183670de0b6b3a764000061589b565b613b1b91906158c8565b613b259085615920565b93505b60006305f5e100613b398a8c61589b565b613b4391906158c8565b90506000613b5a613b548a8461589b565b89614220565b90508015613b8c5780613b7583670de0b6b3a764000061589b565b613b7f91906158c8565b613b899087615920565b95505b5050505060006305f5e1008d8c613ba39190615920565b613bad908e61589b565b613bb791906158c8565b90506000613bc8613af08c8461589b565b90508015613bfa5780613be383670de0b6b3a764000061589b565b613bed91906158c8565b613bf79084615920565b92505b60006305f5e100613c0b8c8b615bc6565b613c15908c61589b565b613c1f91906158c8565b90506000613c30613b548a8461589b565b90508015613c625780613c4b83670de0b6b3a764000061589b565b613c5591906158c8565b613c5f9086615920565b94505b50505091109b9a5050505050505050505050565b600080613c828461368c565b91509150600080613c928561368c565b91509150613cc16040518060800160405280600081526020016000815260200160008152602001600081525090565b6001600160a01b0387166000908152600a602052604090205460ff16613ce8906012615ab7565b613cf390600a615bb7565b6040820152613d1a866001600160a01b03166000908152600a602052604090205460ff1690565b613d25906012615ab7565b613d3090600a615bb7565b60608201526040810151613d44908a61589b565b81526000613d53856012615ab7565b613d5e90600a615bb7565b613d68908761589b565b90506000613d77846012615ab7565b613d8290600a615bb7565b613d8c908661589b565b90506000836060015182848660000151613da6919061589b565b613db091906158c8565b613dba91906158c8565b90506000612710613dcc60c882615920565b613dd6908461589b565b613de091906158c8565b9050808c1115613e0357604051630d6974bb60e31b815260040160405180910390fd5b50505050505050505050505050565b600080600080613e2488888888614299565b925092509250613e348282614368565b50909695505050505050565b600e546001600160a01b0316613e5257565b600080600e60009054906101000a90046001600160a01b03166001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa158015613ea8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613ecc91906159a7565b5050925092505081600014613ef35760405162032b3d60e81b815260040160405180910390fd5b6000613eff8242615bc6565b9050610e108111611c3b5760405163d15f73b560e01b815260040160405180910390fd5b6001600160a01b038116600090815260096020526040812054610b83565b60008087604051602001613f559190615bd9565b604051602081830303815290604052805190602001209050600083604051602001613f809190615bd9565b604051602081830303815290604052805190602001209050604051602001614063907f4465706f7369745374727563742861646472657373206465706f7369746f722c81527f75696e743235365b5d206465706f7369745f616d6f756e74732c75696e74323560208201527f36206c6f636b5f74696d652c75696e7432353620706f6f6c5f746f6b656e732c60408201527f75696e7432353620676f6f645f756e74696c2c75696e74323536206c705f746f60608201527f6b656e5f70726963652c75696e743235365b5d207072696365732900000000006080820152609b0190565b60408051601f198184030181528282528051602091820120908301526001600160a01b038c1690820152606081018390526080810189905260a0810188905260c0810187905260e081018690526101008101829052610120016040516020818303038152906040528051906020012092505050979650505050505050565b60006040516020016141ae907f4f66666572537472756374286164647265737320696e7075745f746f6b656e2c81527f61646472657373206f75747075745f746f6b656e2c75696e7432353620696e7060208201527f75745f616d6f756e742c75696e74323536206f75747075745f616d6f756e742c60408201527f75696e7432353620676f6f645f756e74696c2c6164647265737320646573746960608201527f6e6174696f6e5f616464726573732900000000000000000000000000000000006080820152608f0190565b60408051808303601f190181528282528051602091820120818401526001600160a01b03998a16838301529789166060830152608082019690965260a08101949094525060c083019190915290931660e080850191909152815180850390910181526101009093019052815191012090565b60008260000361423257506000610b83565b60006142486142436110b786614421565b61444e565b90506000614274670de0b6b3a764000061426e846142686110b789614421565b906145bc565b9061467a565b905060006142846110b783614727565b905061428f81613053565b9350505050610b83565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156142d4575060009150600390508261435e565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015614328573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166143545750600092506001915082905061435e565b9250600091508190505b9450945094915050565b600082600381111561437c5761437c615c0f565b03614385575050565b600182600381111561439957614399615c0f565b036143b75760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156143cb576143cb615c0f565b036143ec5760405163fce698f760e01b815260048101829052602401611a61565b600382600381111561440057614400615c0f565b03612040576040516335e2f38360e21b815260048101829052602401611a61565b60006001600160ff1b038211156130795760405163123baf0360e11b815260048101839052602401611a61565b6000818181136144745760405163059b101b60e01b815260048101849052602401611a61565b6000670de0b6b3a7640000821261448d575060016144b3565b50600019816ec097ce7bc90715b34b9f1000000000816144af576144af6158b2565b0591505b600061453f670de0b6b3a7640000840560016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810283821d670de0b6b3a763ffff19810161456757818402612539565b671bc16d674ec800006706f05b59d3b200005b60008113156145ad57670de0b6b3a76400008380020592508183126145a5579283019260019290921d915b60011d61457a565b50505091909102949350505050565b60008282600160ff1b8214806145d55750600160ff1b81145b156145f35760405163a6070c2560e01b815260040160405180910390fd5b600080600084126146045783614609565b836000035b915060008312614619578261461e565b826000035b9050600061462c83836147de565b90506001600160ff1b038111156146605760405163120b5b4360e01b81526004810189905260248101889052604401611a61565b60001985851813613a1381614676578260000390565b8290565b60008282600160ff1b8214806146935750600160ff1b81145b156146b1576040516309fe2b4560e41b815260040160405180910390fd5b600080600084126146c257836146c7565b836000035b9150600083126146d757826146dc565b826000035b905060006146f383670de0b6b3a764000084614894565b90506001600160ff1b038111156146605760405163d49c26b360e01b81526004810189905260248101889052604401611a61565b6000818181121561478d5768033dd1780914b971141981121561474d5750600092915050565b6147866147656110b76147608460000390565b614727565b6ec097ce7bc90715b34b9f100000000081614782576147826158b2565b0590565b91506147d8565b680a688906bd8affffff8113156147b957604051626c1a0560e31b815260048101849052602401611a61565b670de0b6b3a7640000604082901b056147d46110b782614968565b9250505b50919050565b60008080600019848609848602925082811083820303915050806000036148125750670de0b6b3a764000090049050610b83565b670de0b6b3a7640000811061484457604051635173648d60e01b81526004810186905260248101859052604401611a61565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b60008080600019858709858702925082811083820303915050806000036148ce578382816148c4576148c46158b2565b0492505050610d50565b8381106148ff57604051630c740aef60e31b8152600481018790526024810186905260448101859052606401611a61565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b7780000000000000000000000000000000000000000000000067ff00000000000000821615614a89576780000000000000008216156149b05768016a09e667f3bcc9090260401c5b6740000000000000008216156149cf576801306fe0a31b7152df0260401c5b6720000000000000008216156149ee576801172b83c7d517adce0260401c5b671000000000000000821615614a0d5768010b5586cf9890f62a0260401c5b670800000000000000821615614a2c576801059b0d31585743ae0260401c5b670400000000000000821615614a4b57680102c9a3e778060ee70260401c5b670200000000000000821615614a6a5768010163da9fb33356d80260401c5b670100000000000000821615614a8957680100b1afa5abcbed610260401c5b66ff000000000000821615614b88576680000000000000821615614ab65768010058c86da1c09ea20260401c5b6640000000000000821615614ad4576801002c605e2e8cec500260401c5b6620000000000000821615614af257680100162f3904051fa10260401c5b6610000000000000821615614b10576801000b175effdc76ba0260401c5b6608000000000000821615614b2e57680100058ba01fb9f96d0260401c5b6604000000000000821615614b4c5768010002c5cc37da94920260401c5b6602000000000000821615614b6a576801000162e525ee05470260401c5b6601000000000000821615614b885768010000b17255775c040260401c5b65ff0000000000821615614c7e5765800000000000821615614bb3576801000058b91b5bc9ae0260401c5b65400000000000821615614bd057680100002c5c89d5ec6d0260401c5b65200000000000821615614bed5768010000162e43f4f8310260401c5b65100000000000821615614c0a57680100000b1721bcfc9a0260401c5b65080000000000821615614c275768010000058b90cf1e6e0260401c5b65040000000000821615614c44576801000002c5c863b73f0260401c5b65020000000000821615614c6157680100000162e430e5a20260401c5b65010000000000821615614c7e576801000000b1721835510260401c5b64ff00000000821615614d6b57648000000000821615614ca757680100000058b90c0b490260401c5b644000000000821615614cc35768010000002c5c8601cc0260401c5b642000000000821615614cdf576801000000162e42fff00260401c5b641000000000821615614cfb5768010000000b17217fbb0260401c5b640800000000821615614d17576801000000058b90bfce0260401c5b640400000000821615614d3357680100000002c5c85fe30260401c5b640200000000821615614d4f5768010000000162e42ff10260401c5b640100000000821615614d6b57680100000000b17217f80260401c5b63ff000000821615614e4f576380000000821615614d925768010000000058b90bfc0260401c5b6340000000821615614dad576801000000002c5c85fe0260401c5b6320000000821615614dc857680100000000162e42ff0260401c5b6310000000821615614de3576801000000000b17217f0260401c5b6308000000821615614dfe57680100000000058b90c00260401c5b6304000000821615614e195768010000000002c5c8600260401c5b6302000000821615614e34576801000000000162e4300260401c5b6301000000821615614e4f5768010000000000b172180260401c5b62ff0000821615614f2a5762800000821615614e74576801000000000058b90c0260401c5b62400000821615614e8e57680100000000002c5c860260401c5b62200000821615614ea85768010000000000162e430260401c5b62100000821615614ec257680100000000000b17210260401c5b62080000821615614edc5768010000000000058b910260401c5b62040000821615614ef6576801000000000002c5c80260401c5b62020000821615614f1057680100000000000162e40260401c5b62010000821615614f2a576801000000000000b1720260401c5b61ff00821615614ffc57618000821615614f4d57680100000000000058b90260401c5b614000821615614f665768010000000000002c5d0260401c5b612000821615614f7f576801000000000000162e0260401c5b611000821615614f985768010000000000000b170260401c5b610800821615614fb1576801000000000000058c0260401c5b610400821615614fca57680100000000000002c60260401c5b610200821615614fe357680100000000000001630260401c5b610100821615614ffc57680100000000000000b10260401c5b60ff8216156150c557608082161561501d57680100000000000000590260401c5b6040821615615035576801000000000000002c0260401c5b602082161561504d57680100000000000000160260401c5b6010821615615065576801000000000000000b0260401c5b600882161561507d57680100000000000000060260401c5b600482161561509557680100000000000000030260401c5b60028216156150ad57680100000000000000010260401c5b60018216156150c557680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000815180845260005b81811015615102576020818501810151868301820152016150e6565b506000602082860101526020601f19601f83011685010191505092915050565b602081526000610d5060208301846150dc565b80356001600160a01b038116811461514c57600080fd5b919050565b6000606082840312156147d857600080fd5b60008083601f84011261517557600080fd5b50813567ffffffffffffffff81111561518d57600080fd5b6020830191508360208285010111156151a557600080fd5b9250929050565b600080600080600080600080610120898b0312156151c957600080fd5b6151d289615135565b9750602089013596506040890135955060608901359450608089013593506151fd8a60a08b01615151565b925061010089013567ffffffffffffffff81111561521a57600080fd5b6152268b828c01615163565b999c989b5096995094979396929594505050565b6000806040838503121561524d57600080fd5b61525683615135565b946020939093013593505050565b60008060008060008060c0878903121561527d57600080fd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b6000602082840312156152b957600080fd5b610d5082615135565b6060808252845190820181905260009060208601906080840190835b818110156152fc5783518352602093840193909201916001016152de565b50508381036020808601919091528651808352918101925086019060005b818110156153415782516001600160a01b031684526020938401939092019160010161531a565b505050604092909201929092529392505050565b60008060006060848603121561536a57600080fd5b61537384615135565b925061538160208501615135565b929592945050506040919091013590565b600080600080600080600080610120898b0312156153af57600080fd5b6153b889615135565b97506020890135965060408901359550606089013594506153db60808a01615135565b93506151fd8a60a08b01615151565b60008060008060008060008060006101408a8c03121561540957600080fd5b6154128a615135565b985061542060208b01615135565b975060408a0135965060608a0135955060808a0135945061544360a08b01615135565b93506154528b60c08c01615151565b92506101208a013567ffffffffffffffff81111561546f57600080fd5b61547b8c828d01615163565b915080935050809150509295985092959850929598565b600080600080600080600080610120898b0312156154af57600080fd5b6154b889615135565b9750602089013596506154cd60408a01615135565b955060608901359450608089013593506151fd8a60a08b01615151565b6000602082840312156154fc57600080fd5b5035919050565b60008083601f84011261551557600080fd5b50813567ffffffffffffffff81111561552d57600080fd5b6020830191508360208260051b85010111156151a557600080fd5b60008060008060008060008060006101208a8c03121561556757600080fd5b6155708a615135565b985060208a013567ffffffffffffffff81111561558c57600080fd5b6155988c828d01615503565b90995097505060408a0135955060608a0135945060808a013593506155c08b60a08c01615151565b92506101008a013567ffffffffffffffff81111561546f57600080fd5b60008060008060008060008060006101408a8c0312156155fc57600080fd5b6156058a615135565b985061561360208b01615135565b975060408a0135965060608a0135955060808a0135945060a08a013593506154528b60c08c01615151565b600080600080600080600080610100898b03121561565b57600080fd5b883567ffffffffffffffff81111561567257600080fd5b61567e8b828c01615503565b9099509750506020890135955060408901359450606089013593506156a68a60808b01615151565b925060e089013567ffffffffffffffff81111561521a57600080fd5b60008060008060008060a087890312156156db57600080fd5b86359550602087013594506040870135935060608701359250608087013567ffffffffffffffff81111561570e57600080fd5b61571a89828a01615163565b979a9699509497509295939492505050565b6000806040838503121561573f57600080fd5b50508035926020909101359150565b6000806040838503121561576157600080fd5b61576a83615135565b915061577860208401615135565b90509250929050565b600181811c9082168061579557607f821691505b6020821081036147d857634e487b7160e01b600052602260045260246000fd5b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff811182821017156157f4576157f46157b5565b604052919050565b60ff81168114611a7357600080fd5b6000606082840312801561581e57600080fd5b506040516060810167ffffffffffffffff81118282101715615842576158426157b5565b6040528235615850816157fc565b8152602083810135908201526040928301359281019290925250919050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052601160045260246000fd5b8082028115828204841417610b8357610b83615885565b634e487b7160e01b600052601260045260246000fd5b6000826158e557634e487b7160e01b600052601260045260246000fd5b500490565b6000600182016158fc576158fc615885565b5060010190565b60006020828403121561591557600080fd5b8151610d50816157fc565b80820180821115610b8357610b83615885565b60ff8181168382160190811115610b8357610b83615885565b83815282602082015260606040820152600061596b60608301846150dc565b95945050505050565b60006020828403121561598657600080fd5b5051919050565b805169ffffffffffffffffffff8116811461514c57600080fd5b600080600080600060a086880312156159bf57600080fd5b6159c88661598d565b602087015160408801516060890151929750909550935091506159ed6080870161598d565b90509295509295909350565b60008060408385031215615a0c57600080fd5b8251602084015190925067ffffffffffffffff811115615a2b57600080fd5b8301601f81018513615a3c57600080fd5b805167ffffffffffffffff811115615a5657615a566157b5565b8060051b615a66602082016157cb565b91825260208184018101929081019088841115615a8257600080fd5b6020850194505b83851015615aa857845180835260209586019590935090910190615a89565b80955050505050509250929050565b60ff8281168282160390811115610b8357610b83615885565b6001815b6001841115615b0b57808504811115615aef57615aef615885565b6001841615615afd57908102905b60019390931c928002615ad4565b935093915050565b600082615b2257506001610b83565b81615b2f57506000610b83565b8160018114615b455760028114615b4f57615b6b565b6001915050610b83565b60ff841115615b6057615b60615885565b50506001821b610b83565b5060208310610133831016604e8410600b8410161715615b8e575081810a610b83565b615b9b6000198484615ad0565b8060001904821115615baf57615baf615885565b029392505050565b6000610d5060ff841683615b13565b81810381811115610b8357610b83615885565b8151600090829060208501835b82811015615c04578151845260209384019390910190600101615be6565b509195945050505050565b634e487b7160e01b600052602160045260246000fdfea2646970667358221220934a1d9a423aa150a2aba40cc46c732a188ea43bba4b7c2983ce68bf5989642464736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f8000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab6200000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000000000000000000000180000000000000000000000000a372e7f8ba1f0377667c8c52fea2bc3e271a0e680000000000000000000000000000000000000000000000000000000000000002000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62000000000000000000000000b24e3035d1fcbc0e43cf3143c3fd92e53df2009b00000000000000000000000000000000000000000000000000000000000000020000000000000000000000007bdbdb772f4a073badd676a567c6ed82049a8eee000000000000000000000000f6630799b5387e0e9ace92a5e82673021781b44000000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000e100000000000000000000000000000000000000000000000000000000000000e10

-----Decoded View---------------
Arg [0] : theSigner (address): 0x08938a61BA9523298dbCAceE0cda5B371FB7f1F8
Arg [1] : theWrapper (address): 0xEE7D8BCFb72bC1880D0Cf19822eB0A2e6577aB62
Arg [2] : tokens (address[]): 0xEE7D8BCFb72bC1880D0Cf19822eB0A2e6577aB62,0xb24e3035d1FCBC0E43CF3143C3Fd92E53df2009b
Arg [3] : _oracles (address[]): 0x7BdBDB772f4a073BadD676A567C6ED82049a8eEE,0xF6630799b5387e0E9ACe92a5E82673021781B440
Arg [4] : minTimeTolerances (uint256[]): 3600,3600
Arg [5] : initialOwner (address): 0xA372e7f8bA1F0377667C8c52FEA2BC3E271a0e68

-----Encoded View---------------
15 Constructor Arguments found :
Arg [0] : 00000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f8
Arg [1] : 000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000120
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [5] : 000000000000000000000000a372e7f8ba1f0377667c8c52fea2bc3e271a0e68
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [7] : 000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab62
Arg [8] : 000000000000000000000000b24e3035d1fcbc0e43cf3143c3fd92e53df2009b
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [10] : 0000000000000000000000007bdbdb772f4a073badd676a567c6ed82049a8eee
Arg [11] : 000000000000000000000000f6630799b5387e0e9ace92a5e82673021781b440
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000e10
Arg [14] : 0000000000000000000000000000000000000000000000000000000000000e10


[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.