ERC-1155
Overview
Max Total Supply
5 RubyScore Badges: Katana
Holders
5
Market
Onchain Market Cap
-
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Rubyscore_Katana_Badges
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {RubyscoreBadges} from "contracts-forge/base/RubyscoreBadges.sol";
contract Rubyscore_Katana_Badges is RubyscoreBadges {
string public constant NAME = "RubyScore Badges: Katana";
string public constant SYMBOL = "RubyScore Badges: Katana";
constructor(
address admin,
address operator,
address minter,
string memory baseURI
) RubyscoreBadges(admin, operator, minter, baseURI, NAME, SYMBOL) {}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IRubyscoreBadges} from "./interfaces/IRubyscoreBadges.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {ERC1155URIStorage} from "@openzeppelin/contracts/token/ERC1155/extensions/ERC1155URIStorage.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ERC1155, ERC1155Supply} from "@openzeppelin/contracts/token/ERC1155/extensions/ERC1155Supply.sol";
/**
* @title RubyscoreBadges
* @dev An ERC1155 token contract for minting and managing badges with URI support.
* @dev RubyscoreBadges can be minted by users with the MINTER_ROLE after proper authorization.
* @dev RubyscoreBadges can have their URIs set by operators with the MINTER_ROLE.
* @dev RubyscoreBadges can be safely transferred with restrictions on certain tokens.
*/
contract RubyscoreBadges is
ERC1155,
EIP712,
AccessControl,
ERC1155Supply,
ERC1155URIStorage,
ReentrancyGuard,
IRubyscoreBadges
{
bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
string public constant VERSION = "0.0.1";
uint256 private price;
string public name;
string public symbol;
mapping(uint256 => bool) private transferUnlock;
mapping(address => uint256) private userNonce;
/**
* @dev See {RubyscoreBadges}
*/
function supportsInterface(
bytes4 interfaceId
) public view override(ERC1155, AccessControl, IRubyscoreBadges) returns (bool) {
return super.supportsInterface(interfaceId);
}
/**
* @dev See {RubyscoreBadges}
*/
function uri(
uint256 tokenId
) public view override(ERC1155, ERC1155URIStorage, IRubyscoreBadges) returns (string memory) {
return super.uri(tokenId);
}
/**
* @dev See {RubyscoreBadges}
*/
function getTransferStatus(uint256 tokenId) external view returns (bool) {
return transferUnlock[tokenId];
}
/**
* @dev See {RubyscoreBadges}
*/
function getPrice() external view returns (uint256) {
return price;
}
/**
* @dev See {RubyscoreBadges}
*/
function getUserNonce(address userAddress) external view returns (uint256) {
return userNonce[userAddress];
}
/**
* @dev See {RubyscoreBadges}
*/
function tokenURI(uint256 tokenId) public view returns (string memory) {
return uri(tokenId);
}
//TODO: use ERC1155("https://xproject.api/achivments/") like error URI and set new for ERC1155URIStorage
/**
* @notice Constructor for the RubyscoreBadges contract.
* @dev Initializes the contract with roles and settings.
* @param admin The address of the admin role, which has overall control.
* @param operator The address of the operator role, responsible for unlock tokens and set base URI.
* @param minter The address of the minter role, authorized to mint badges and responsible for setting token URIs.
* @param baseURI The base URI for token metadata.
* @dev It sets the base URI for token metadata to the provided `baseURI`.
* @dev It grants the DEFAULT_ADMIN_ROLE, OPERATOR_ROLE, and MINTER_ROLE to the specified addresses.
* @dev It also initializes the contract with EIP712 support and ERC1155 functionality.
*/
constructor(
address admin,
address operator,
address minter,
string memory baseURI,
string memory _name,
string memory _symbol
) ERC1155("ipfs://") EIP712(_name, VERSION) {
require(admin != address(0), "Zero address check");
require(operator != address(0), "Zero address check");
require(minter != address(0), "Zero address check");
name = _name;
symbol = _symbol;
_grantRole(DEFAULT_ADMIN_ROLE, admin);
_grantRole(OPERATOR_ROLE, msg.sender);
_grantRole(OPERATOR_ROLE, operator);
_grantRole(MINTER_ROLE, minter);
_setBaseURI(baseURI);
}
/**
* @dev See {RubyscoreBadges}
*/
function setTokenURI(uint256 tokenId, string memory newTokenURI) public onlyRole(MINTER_ROLE) {
super._setURI(tokenId, newTokenURI);
emit TokenURISet(tokenId, newTokenURI);
}
/**
* @dev See {RubyscoreBadges}
*/
function setBatchTokenURI(
uint256[] calldata tokenIds,
string[] calldata newTokenURIs
) external onlyRole(MINTER_ROLE) {
require(tokenIds.length == newTokenURIs.length, "Invalid params");
for (uint256 i = 0; i < tokenIds.length; i++) {
setTokenURI(tokenIds[i], newTokenURIs[i]);
}
}
/**
* @dev See {RubyscoreBadges}
*/
function setBaseURI(string memory newBaseURI) external onlyRole(OPERATOR_ROLE) {
super._setBaseURI(newBaseURI);
emit BaseURISet(newBaseURI);
}
/**
* @dev See {RubyscoreBadges}
*/
function setPrice(uint256 newPrice) external onlyRole(OPERATOR_ROLE) {
price = newPrice;
emit PriceUpdated(newPrice);
}
/**
* @dev See {RubyscoreBadges}
*/
function safeMint(MintParams memory mintParams, bytes calldata operatorSignature) external payable nonReentrant {
require(mintParams.nftIds.length >= 1, "Invalid NFT ids");
require(msg.value == price, "Wrong payment amount");
bytes32 digest = _hashTypedDataV4(
keccak256(
abi.encode(
keccak256("MintParams(address userAddress,uint256 userNonce,uint256[] nftIds)"),
msg.sender,
userNonce[msg.sender],
keccak256(abi.encodePacked(mintParams.nftIds))
)
)
);
_checkRole(MINTER_ROLE, ECDSA.recover(digest, operatorSignature));
userNonce[mintParams.userAddress] += 1;
if (mintParams.nftIds.length > 1) _mintBatch(mintParams.userAddress, mintParams.nftIds, "");
else _mint(mintParams.userAddress, mintParams.nftIds[0], "");
emit Minted(mintParams.userAddress, mintParams.userNonce, mintParams.nftIds);
}
/**
* @dev See {RubyscoreBadges}
*/
function setTransferUnlock(uint256 tokenId, bool lock) external onlyRole(OPERATOR_ROLE) {
transferUnlock[tokenId] = lock;
emit TokenUnlockSet(tokenId, lock);
}
/**
* @dev See {RubyscoreBadges}
*/
function withdraw() external onlyRole(DEFAULT_ADMIN_ROLE) {
uint256 amount = address(this).balance;
require(amount > 0, "Zero amount to withdraw");
(bool sent, ) = payable(msg.sender).call{value: amount}("");
require(sent, "Failed to send Ether");
emit Withdrawed(amount);
}
/**
* @dev See {RubyscoreBadges}
*/
function _mint(address to, uint256 id, bytes memory data) internal {
require(balanceOf(to, id) == 0, "You already have this badge");
super._mint(to, id, 1, data);
}
/**
* @notice Internal function to safely mint multiple NFTs in a batch for a specified recipient.
* @param to The address of the recipient to mint the NFTs for.
* @param ids An array of NFT IDs to mint.
* @param data Additional data to include in the minting transaction.
* @dev This function checks if the recipient already owns any of the specified NFTs to prevent duplicates.
* @dev It is intended for batch minting operations where multiple NFTs can be minted at once.
*/
function _mintBatch(address to, uint256[] memory ids, bytes memory data) internal {
uint256[] memory amounts = new uint256[](ids.length);
for (uint8 i = 0; i < ids.length; i++) {
require(balanceOf(to, ids[i]) == 0, "You already have this badge"); // TODO: custom error with problem token id
amounts[i] = 1;
}
super._mintBatch(to, ids, amounts, data);
}
// The following functions are overrides required by Solidity.
function _update(
address from,
address to,
uint256[] memory ids,
uint256[] memory values
) internal override(ERC1155, ERC1155Supply) {
for (uint256 i = 0; i < ids.length; i++) {
if (!transferUnlock[ids[i]] && from != address(0)) revert("This token only for you");
}
super._update(from, to, ids, values);
}
}// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.28;
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
/**
* @title IRubyscoreBadges
* @dev IRubyscoreBadges is an interface for RubyscoreBadges contract
*/
interface IRubyscoreBadges is IERC1155 {
struct MintParams {
address userAddress; // Address of the buyer.
uint256 userNonce; // Nonce associated with the user's address for preventing replay attacks.
uint256[] nftIds; // ids of NFTs to mint
}
/**
* @notice Emitted when the base URI for token metadata is updated.
* @param newBaseURI The new base URI that will be used to construct token metadata URIs.
* @dev This event is triggered when the contract operator updates the base URI
* for retrieving metadata associated with tokens. The 'newBaseURI' parameter represents
* the updated base URI.
*/
event BaseURISet(string indexed newBaseURI);
/**
* @notice Emitted when NFTs are minted for a user.
* @param userAddress The address of the user receiving the NFTs.
* @param userNonce The user's nonce used to prevent replay attacks.
* @param nftIds An array of NFT IDs that were minted.
* @dev This event is emitted when new NFTs are created and assigned to a user.
* @dev It includes the user's address, nonce, and the IDs of the minted NFTs for transparency.
*/
event Minted(address indexed userAddress, uint256 indexed userNonce, uint256[] nftIds);
/**
* @notice Emitted when the URI for a specific token is updated.
* @param tokenId The ID of the token for which the URI is updated.
* @param newTokenURI The new URI assigned to the token.
* @dev This event is emitted when the URI for a token is modified, providing transparency
* when metadata URIs are changed for specific tokens.
*/
event TokenURISet(uint256 indexed tokenId, string indexed newTokenURI);
/**
* @notice Emitted when the transfer lock status for a token is updated.
* @param tokenId The ID of the token for which the transfer lock status changes.
* @param lock The new transfer lock status (true for locked, false for unlocked).
* @dev This event is emitted when the transfer lock status of a specific token is modified.
* @dev It provides transparency regarding whether a token can be transferred or not.
*/
event TokenUnlockSet(uint256 indexed tokenId, bool indexed lock);
/**
* @notice Emitted when the price for a token mint is updated.
* @param newPrice The new price for mint.
* @dev This event is emitted when the price for mint a token is modified.
*/
event PriceUpdated(uint256 newPrice);
/**
* @notice Get token name.
* @return Token name.
*/
function name() external view returns (string memory);
/**
* @notice Get token symbol.
* @return Token symbol.
*/
function symbol() external view returns (string memory);
/**
* @notice Get the URI of a token.
* @param tokenId The ID of the token.
* @return The URI of the token.
*/
function uri(uint256 tokenId) external view returns (string memory);
/**
* @notice Get the transfer status of a token.
* @param tokenId The ID of the token.
* @return Whether the token's transfer is unlocked (true) or restricted (false).
*/
function getTransferStatus(uint256 tokenId) external view returns (bool);
/**
* @notice Get the user's nonce associated with their address.
* @param userAddress The address of the user.
* @return The user's nonce.
*/
function getUserNonce(address userAddress) external view returns (uint256);
/**
* @notice Get the token URI for a given tokenId.
* @param tokenId The ID of the token.
* @return The URI of the token.
* @dev Duplicate for uri() method
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
/**
* @notice Set the URI for a token.
* @param tokenId The ID of the token.
* @param newTokenURI The new URI to set for the token.
* @dev Requires the MINTER_ROLE.
*/
function setTokenURI(uint256 tokenId, string memory newTokenURI) external;
/**
* @notice Set the URIs for multiple tokens in a batch.
* @param tokenIds An array of token IDs to set URIs for.
* @param newTokenURIs An array of new URIs to set for the tokens.
* @dev Requires the MINTER_ROLE.
* @dev Requires that the tokenIds and newTokenURIs arrays have the same length.
*/
function setBatchTokenURI(uint256[] calldata tokenIds, string[] calldata newTokenURIs) external;
/**
* @notice Set the base URI for all tokens.
* @param newBaseURI The new base URI to set.
* @dev Requires the OPERATOR_ROLE.
*/
function setBaseURI(string memory newBaseURI) external;
/**
* @notice Safely mints NFTs for a user based on provided parameters and a valid minter signature.
* @param mintParams The struct containing user address, user nonce, and NFT IDs to mint.
* @param operatorSignature The ECDSA signature of the data, validating the operator's role.
* @dev This function safely mints NFTs for a user while ensuring the validity of the operator's signature.
* @dev It requires that the provided NFT IDs are valid and that the operator has the MINTER_ROLE.
* @dev User nonces are used to prevent replay attacks.
* @dev Multiple NFTs can be minted in a batch or a single NFT can be minted based on the number of NFT IDs provided.
* @dev Emits the 'Minted' event to indicate the successful minting of NFTs.
*/
function safeMint(MintParams memory mintParams, bytes calldata operatorSignature) external payable;
event Withdrawed(uint256 amount);
/**
* @notice Sets the transfer lock status for a specific token ID.
* @param tokenId The ID of the token to set the transfer lock status for.
* @param lock The boolean value to determine whether transfers of this token are locked or unlocked.
* @dev This function can only be called by an operator with the OPERATOR_ROLE.
* @dev It allows operators to control the transferability of specific tokens.
* @dev Emits the 'tokenUnlockSet' event to indicate the change in transfer lock status.
*/
function setTransferUnlock(uint256 tokenId, bool lock) external;
/**
* @notice Check if a given interface is supported by this contract.
* @param interfaceId The interface identifier to check for support.
* @return Whether the contract supports the specified interface.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
function withdraw() external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @inheritdoc IERC5267
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/ERC1155URIStorage.sol)
pragma solidity ^0.8.20;
import {Strings} from "../../../utils/Strings.sol";
import {ERC1155} from "../ERC1155.sol";
/**
* @dev ERC-1155 token with storage based token URI management.
* Inspired by the {ERC721URIStorage} extension
*/
abstract contract ERC1155URIStorage is ERC1155 {
using Strings for uint256;
// Optional base URI
string private _baseURI = "";
// Optional mapping for token URIs
mapping(uint256 tokenId => string) private _tokenURIs;
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the concatenation of the `_baseURI`
* and the token-specific uri if the latter is set
*
* This enables the following behaviors:
*
* - if `_tokenURIs[tokenId]` is set, then the result is the concatenation
* of `_baseURI` and `_tokenURIs[tokenId]` (keep in mind that `_baseURI`
* is empty per default);
*
* - if `_tokenURIs[tokenId]` is NOT set then we fallback to `super.uri()`
* which in most cases will contain `ERC1155._uri`;
*
* - if `_tokenURIs[tokenId]` is NOT set, and if the parents do not have a
* uri value set, then the result is empty.
*/
function uri(uint256 tokenId) public view virtual override returns (string memory) {
string memory tokenURI = _tokenURIs[tokenId];
// If token URI is set, concatenate base URI and tokenURI (via string.concat).
return bytes(tokenURI).length > 0 ? string.concat(_baseURI, tokenURI) : super.uri(tokenId);
}
/**
* @dev Sets `tokenURI` as the tokenURI of `tokenId`.
*/
function _setURI(uint256 tokenId, string memory tokenURI) internal virtual {
_tokenURIs[tokenId] = tokenURI;
emit URI(uri(tokenId), tokenId);
}
/**
* @dev Sets `baseURI` as the `_baseURI` for all tokens
*/
function _setBaseURI(string memory baseURI) internal virtual {
_baseURI = baseURI;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/ERC1155Supply.sol)
pragma solidity ^0.8.20;
import {ERC1155} from "../ERC1155.sol";
import {Arrays} from "../../../utils/Arrays.sol";
/**
* @dev Extension of ERC-1155 that adds tracking of total supply per id.
*
* Useful for scenarios where Fungible and Non-fungible tokens have to be
* clearly identified. Note: While a totalSupply of 1 might mean the
* corresponding is an NFT, there is no guarantees that no other token with the
* same id are not going to be minted.
*
* NOTE: This contract implies a global limit of 2**256 - 1 to the number of tokens
* that can be minted.
*
* CAUTION: This extension should not be added in an upgrade to an already deployed contract.
*/
abstract contract ERC1155Supply is ERC1155 {
using Arrays for uint256[];
mapping(uint256 id => uint256) private _totalSupply;
uint256 private _totalSupplyAll;
/**
* @dev Total value of tokens in with a given id.
*/
function totalSupply(uint256 id) public view virtual returns (uint256) {
return _totalSupply[id];
}
/**
* @dev Total value of tokens.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupplyAll;
}
/**
* @dev Indicates whether any token exist with a given id, or not.
*/
function exists(uint256 id) public view virtual returns (bool) {
return totalSupply(id) > 0;
}
/**
* @dev See {ERC1155-_update}.
*/
function _update(
address from,
address to,
uint256[] memory ids,
uint256[] memory values
) internal virtual override {
super._update(from, to, ids, values);
if (from == address(0)) {
uint256 totalMintValue = 0;
for (uint256 i = 0; i < ids.length; ++i) {
uint256 value = values.unsafeMemoryAccess(i);
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply[ids.unsafeMemoryAccess(i)] += value;
totalMintValue += value;
}
// Overflow check required: The rest of the code assumes that totalSupplyAll never overflows
_totalSupplyAll += totalMintValue;
}
if (to == address(0)) {
uint256 totalBurnValue = 0;
for (uint256 i = 0; i < ids.length; ++i) {
uint256 value = values.unsafeMemoryAccess(i);
unchecked {
// Overflow not possible: values[i] <= balanceOf(from, ids[i]) <= totalSupply(ids[i])
_totalSupply[ids.unsafeMemoryAccess(i)] -= value;
// Overflow not possible: sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
totalBurnValue += value;
}
}
unchecked {
// Overflow not possible: totalBurnValue = sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
_totalSupplyAll -= totalBurnValue;
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[ERC].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {IERC1155Receiver-onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {IERC1155Receiver-onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*/
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
using Arrays for uint256[];
using Arrays for address[];
mapping(uint256 id => mapping(address account => uint256)) private _balances;
mapping(address account => mapping(address operator => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*/
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (from != address(0)) {
uint256 fromBalance = _balances[id][from];
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
unchecked {
// Overflow not possible: value <= fromBalance
_balances[id][from] = fromBalance - value;
}
}
if (to != address(0)) {
_balances[id][to] += value;
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
} else {
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
} else {
ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
assembly ("memory-safe") {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC-165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted to signal this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
* Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/utils/ERC1155Utils.sol)
pragma solidity ^0.8.20;
import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-1155 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
*
* _Available since v5.1._
*/
library ERC1155Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC1155Received(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert IERC1155Errors.ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert IERC1155Errors.ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155BatchReceived}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC1155BatchReceived(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert IERC1155Errors.ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert IERC1155Errors.ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC-1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC-1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}{
"remappings": [
"@openzeppelin/=node_modules/@openzeppelin/",
"eth-gas-reporter/=node_modules/eth-gas-reporter/",
"forge-std/=lib/forge-std/src/",
"hardhat-deploy/=node_modules/hardhat-deploy/",
"hardhat/=node_modules/hardhat/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": true
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"minter","type":"address"},{"internalType":"string","name":"baseURI","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"string","name":"newBaseURI","type":"string"}],"name":"BaseURISet","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"userAddress","type":"address"},{"indexed":true,"internalType":"uint256","name":"userNonce","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"PriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"string","name":"newTokenURI","type":"string"}],"name":"TokenURISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"bool","name":"lock","type":"bool"}],"name":"TokenUnlockSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawed","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SYMBOL","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getTransferStatus","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"userAddress","type":"address"}],"name":"getUserNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"userAddress","type":"address"},{"internalType":"uint256","name":"userNonce","type":"uint256"},{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"internalType":"struct IRubyscoreBadges.MintParams","name":"mintParams","type":"tuple"},{"internalType":"bytes","name":"operatorSignature","type":"bytes"}],"name":"safeMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"string[]","name":"newTokenURIs","type":"string[]"}],"name":"setBatchTokenURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"string","name":"newTokenURI","type":"string"}],"name":"setTokenURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bool","name":"lock","type":"bool"}],"name":"setTransferUnlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
61016080604052346105ed5761383b803803809161001d82856105f1565b83398101906080818303126105ed5761003581610614565b9061004260208201610614565b9061004f60408201610614565b606082015190916001600160401b0382116105ed570184601f820112156105ed578051906001600160401b0382116104305760405195610099601f8401601f1916602001886105f1565b828752602083830101116105ed57815f9260208093018389015e860101526100bf610628565b916100c8610628565b936040948551946100d987876105f1565b60058652602086019564302e302e3160d81b8752602088516100fb8a826105f1565b60078152019666697066733a2f2f60c81b88526101196002546106a4565b601f81116105af575b5096516001600160c81b031916600e17600255602096610141836108c8565b6101205261014e82610a04565b61014052825188840120918260e05251902080610100524660a052885190888201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f84528a83015260608201524660808201523060a082015260a081526101b760c0826105f1565b5190206080523060c0526101cc6008546106a4565b601f811161058f575b505f6008556001600a556101f36001600160a01b0384161515610663565b6102076001600160a01b0385161515610663565b61021b6001600160a01b0386161515610663565b8051906001600160401b038211610430578190610239600c546106a4565b601f8111610560575b508790601f83116001146104fa575f926104ef575b50508160011b915f199060031b1c191617600c555b8051906001600160401b03821161043057610288600d546106a4565b601f81116104c0575b508590601f831160011461044f5792826102e59695936102cf936102df965f92610444575b50508160011b915f199060031b1c191617600d5561072c565b506102d9336107a2565b506107a2565b50610835565b508251906001600160401b038211610430576103026008546106a4565b601f81116103f6575b5080601f831160011461039257508192935f92610387575b50508160011b915f199060031b1c1916176008555b51612cc99081610af282396080518161238c015260a05181612449015260c05181612356015260e051816123db0152610100518161240101526101205181610ea601526101405181610ed20152f35b015190505f80610323565b90601f1983169460085f52825f20925f905b8782106103de5750508360019596106103c6575b505050811b01600855610338565b01515f1960f88460031b161c191690555f80806103b8565b806001859682949686015181550195019301906103a4565b6104209060085f52825f20601f850160051c810191848610610426575b601f0160051c01906106dc565b5f61030b565b9091508190610413565b634e487b7160e01b5f52604160045260245ffd5b015190505f806102b6565b90601f19831691600d5f52875f20925f5b898282106104aa575050936102cf936102df9693600193836102e59b9a9810610492575b505050811b01600d5561072c565b01515f1960f88460031b161c191690555f8080610484565b6001859682939686015181550195019301610460565b6104e990600d5f52875f20601f850160051c81019189861061042657601f0160051c01906106dc565b5f610291565b015190505f80610257565b600c5f9081528981209350601f198516905b8a82821061054a575050908460019594939210610532575b505050811b01600c5561026c565b01515f1960f88460031b161c191690555f8080610524565b600185968293968601518155019501930161050c565b61058990600c5f52895f20601f850160051c8101918b861061042657601f0160051c01906106dc565b5f610242565b6105a99060085f52601f885f20910160051c8101906106dc565b5f6101d5565b60025f526105e790601f0160051c7f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace908101906106dc565b5f610122565b5f80fd5b601f909101601f19168101906001600160401b0382119082101761043057604052565b51906001600160a01b03821682036105ed57565b604051906106376040836105f1565b601882527f5275627953636f7265204261646765733a204b6174616e6100000000000000006020830152565b1561066a57565b60405162461bcd60e51b81526020600482015260126024820152715a65726f206164647265737320636865636b60701b6044820152606490fd5b90600182811c921680156106d2575b60208310146106be57565b634e487b7160e01b5f52602260045260245ffd5b91607f16916106b3565b8181106106e7575050565b5f81556001016106dc565b9190601f811161070157505050565b61072a925f5260205f20906020601f840160051c8301931061042657601f0160051c01906106dc565b565b6001600160a01b0381165f9081525f51602061381b5f395f51905f52602052604090205460ff1661079d576001600160a01b03165f8181525f51602061381b5f395f51905f5260205260408120805460ff191660011790553391905f5160206137bb5f395f51905f528180a4600190565b505f90565b6001600160a01b0381165f9081525f5160206137fb5f395f51905f52602052604090205460ff1661079d576001600160a01b03165f8181525f5160206137fb5f395f51905f5260205260408120805460ff191660011790553391907f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929905f5160206137bb5f395f51905f529080a4600190565b6001600160a01b0381165f9081525f5160206137db5f395f51905f52602052604090205460ff1661079d576001600160a01b03165f8181525f5160206137db5f395f51905f5260205260408120805460ff191660011790553391907f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6905f5160206137bb5f395f51905f529080a4600190565b908151602081105f14610942575090601f8151116109025760208151910151602082106108f3571790565b5f198260200360031b1b161790565b604460209160405192839163305a27a960e01b83528160048401528051918291826024860152018484015e5f828201840152601f01601f19168101030190fd5b6001600160401b038111610430576109668161095f6003546106a4565b60036106f2565b602092601f82116001146109a357928192935f92610998575b50508160011b915f199060031b1c19161760035560ff90565b015190505f8061097f565b601f1982169360035f52805f20915f5b8681106109ec57508360019596106109d4575b505050811b0160035560ff90565b01515f1960f88460031b161c191690555f80806109c6565b919260206001819286850151815501940192016109b3565b908151602081105f14610a2f575090601f8151116109025760208151910151602082106108f3571790565b6001600160401b03811161043057610a5381610a4c6004546106a4565b60046106f2565b602092601f8211600114610a9057928192935f92610a85575b50508160011b915f199060031b1c19161760045560ff90565b015190505f80610a6c565b601f1982169360045f52805f20915f5b868110610ad95750836001959610610ac1575b505050811b0160045560ff90565b01515f1960f88460031b161c191690555f8080610ab3565b91926020600181928685015181550194019201610aa056fe60806040526004361015610011575f80fd5b5f3560e01c8062fdd58e1461024957806301ffc9a71461024457806306fdde031461023f5780630e89341c146101c7578063162094c41461023a57806318160ddd14610235578063248a9ca3146102305780632eb2c2d61461022b5780632f2ff15d1461022657806336568abe146102215780633ccfd60b1461021c5780634e1273f4146102175780634f558e791461021257806355f804b31461020d5780636834e3a8146102085780637c2ccc451461020357806384b0196e146101fe57806391b7f5ed146101f957806391d14854146101f457806395d89b41146101ef57806398d5fdca146101ea5780639b3e5573146101e5578063a217fddf146101e0578063a22cb465146101db578063a3f4df7e146101a9578063b93c3770146101d6578063ba772d8b146101d1578063bd85b039146101cc578063c87b56dd146101c7578063d5391393146101c2578063d547741f146101bd578063e985e9c5146101b8578063f242432a146101b3578063f5b541a6146101ae578063f76f8d78146101a95763ffa1ad74146101a4575f80fd5b6115c4565b611206565b61158a565b611484565b611434565b6113f6565b6113bc565b610669565b611392565b6112c4565b611265565b611144565b61112a565b6110bb565b61108f565b610fea565b610f9b565b610f4e565b610e8e565b610ded565b610d88565b610c3e565b610c12565b610b53565b610a57565b610a13565b6109ce565b610942565b61089b565b61087e565b610708565b61058f565b6102ec565b610292565b600435906001600160a01b038216820361026457565b5f80fd5b602435906001600160a01b038216820361026457565b35906001600160a01b038216820361026457565b346102645760403660031901126102645760206102d16102b061024e565b6024355f525f835260405f209060018060a01b03165f5260205260405f2090565b54604051908152f35b6001600160e01b031981160361026457565b3461026457602036600319011261026457600435610309816102da565b63ffffffff60e01b16637965db0b60e01b8114908115610332575b506040519015158152602090f35b636cdb3d1360e11b811491508115610364575b8115610353575b505f610324565b6301ffc9a760e01b1490505f61034c565b6303a24d0760e21b81149150610345565b90600182811c921680156103a3575b602083101461038f57565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610384565b634e487b7160e01b5f52604160045260245ffd5b606081019081106001600160401b038211176103dc57604052565b6103ad565b90601f801991011681019081106001600160401b038211176103dc57604052565b604051905f826002549161041583610375565b808352926001811690811561049a575060011461043b575b610439925003836103e1565b565b5060025f90815290917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b81831061047e5750509060206104399282010161042d565b6020919350806001915483858901015201910190918492610466565b6020925061043994915060ff191682840152151560051b82010161042d565b9060405191825f8254926104cc84610375565b808452936001811690811561053557506001146104f1575b50610439925003836103e1565b90505f9291925260205f20905f915b818310610519575050906020610439928201015f6104e4565b6020919350806001915483858901015201910190918492610500565b90506020925061043994915060ff191682840152151560051b8201015f6104e4565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b90602061058c928181520190610557565b90565b34610264575f366003190112610264576040515f600c546105af81610375565b808452906001811690811561064557506001146105e7575b6105e3836105d7818503826103e1565b6040519182918261057b565b0390f35b600c5f9081527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7939250905b80821061062b575090915081016020016105d76105c7565b919260018160209254838588010152019101909291610613565b60ff191660208086019190915291151560051b840190910191506105d790506105c7565b34610264576020366003190112610264576105e3610688600435611bea565b604051918291602083526020830190610557565b6001600160401b0381116103dc57601f01601f191660200190565b9291926106c38261069c565b916106d160405193846103e1565b829481845281830111610264578281602093845f960137010152565b9080601f830112156102645781602061058c933591016106b7565b34610264576040366003190112610264576004356024356001600160401b0381116102645761073b9036906004016106ed565b9061074533611eb5565b805f52600960205260405f20918051926001600160401b0384116103dc57610777846107718354610375565b83611d12565b602093601f811160011461081457806107a9916107e295965f91610809575b508160011b915f199060031b1c19161790565b90555b827f6bb7ff708619ba0610cba295a58592e0451dee2622938c8755667688daf3529b6107da6105d783611bea565b0390a2611702565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3005b90508401515f610796565b601f198116610826835f5260205f2090565b905f5b8181106108665750906107e2959683600194931061084e575b5050811b0190556107ac565b8501515f1960f88460031b161c191690555f80610842565b85880151835560209788019760019093019201610829565b34610264575f366003190112610264576020600754604051908152f35b346102645760203660031901126102645760206108c66004355f526005602052600160405f20015490565b604051908152f35b6001600160401b0381116103dc5760051b60200190565b9080601f830112156102645781356108fc816108ce565b9261090a60405194856103e1565b81845260208085019260051b82010192831161026457602001905b8282106109325750505090565b8135815260209182019101610925565b346102645760a03660031901126102645761095b61024e565b610963610268565b906044356001600160401b038111610264576109839036906004016108e5565b6064356001600160401b038111610264576109a29036906004016108e5565b90608435936001600160401b038511610264576109c66109cc9536906004016106ed565b93611718565b005b34610264576040366003190112610264576109cc6004356109ed610268565b90610a0e610a07825f526005602052600160405f20015490565b3390612021565b611d61565b3461026457604036600319011261026457600435610a2f610268565b336001600160a01b03821603610a48576109cc91611df1565b63334bd91960e11b5f5260045ffd5b34610264575f36600319011261026457610a7033611f3b565b478015610aca57610ac581610ab55f8080807f11e9d9f7a772129e26cb0560945658c96b41c42ac6712d233e20c894bfcd00fd97335af1610aaf611774565b506117a3565b6040519081529081906020820190565b0390a1005b60405162461bcd60e51b815260206004820152601760248201527f5a65726f20616d6f756e7420746f2077697468647261770000000000000000006044820152606490fd5b90602080835192838152019201905f5b818110610b2c5750505090565b8251845260209384019390920191600101610b1f565b90602061058c928181520190610b0f565b34610264576040366003190112610264576004356001600160401b038111610264573660238201121561026457806004013590610b8f826108ce565b91610b9d60405193846103e1565b8083526024602084019160051b8301019136831161026457602401905b828210610bfa57836024356001600160401b038111610264576105e391610be8610bee9236906004016108e5565b9061186d565b60405191829182610b42565b60208091610c078461027e565b815201910190610bba565b34610264576020366003190112610264576004355f526006602052602060405f20541515604051908152f35b34610264576020366003190112610264576004356001600160401b03811161026457610c6e9036906004016106ed565b610c7733611f9b565b80516001600160401b0381116103dc57610c9b81610c96600854610375565b611cc2565b6020601f8211600114610d045781610cd39392610ccb925f91610cf957508160011b915f199060031b1c19161790565b600855611702565b7ff9c7803e94e0d3c02900d8a90893a6d5e90dd04d32a4cfe825520f82bf9f32f65f80a2005b90508301515f610796565b60085f52601f198216907ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3915f5b818110610d705750918391610cd3959460019410610d58575b5050811b01600855611702565b8401515f1960f88460031b161c191690555f80610d4b565b91926020600181928689015181550194019201610d32565b34610264576020366003190112610264576001600160a01b03610da961024e565b165f52600f602052602060405f2054604051908152f35b9181601f84011215610264578235916001600160401b038311610264576020838186019501011161026457565b6040366003190112610264576004356001600160401b03811161026457606060031982360301126102645760405190610e25826103c1565b610e318160040161027e565b8252602481013560208301526044810135906001600160401b038211610264576004610e6092369201016108e5565b6040820152602435906001600160401b03821161026457610e886109cc923690600401610dc0565b916118fc565b34610264575f36600319011261026457610f20610eca7f0000000000000000000000000000000000000000000000000000000000000000612543565b6105e3610ef67f0000000000000000000000000000000000000000000000000000000000000000612608565b610f2e610f016117e6565b91604051958695600f60f81b875260e0602088015260e0870190610557565b908582036040870152610557565b904660608501523060808501525f60a085015283820360c0850152610b0f565b34610264576020366003190112610264577f66cbca4f3c64fecf1dcb9ce094abcf7f68c3450a1d4e3a8e917dd621edb4ebe06020600435610f8e33611f9b565b80600b55604051908152a1005b3461026457604036600319011261026457602060ff610fde600435610fbe610268565b905f526005845260405f209060018060a01b03165f5260205260405f2090565b54166040519015158152f35b34610264575f366003190112610264576040515f600d5461100a81610375565b80845290600181169081156106455750600114611031576105e3836105d7818503826103e1565b600d5f9081527fd7b6990105719101dabeb77144f2a3385c8033acd3af97e9423a695e81ad1eb5939250905b808210611075575090915081016020016105d76105c7565b91926001816020925483858801015201910190929161105d565b34610264575f366003190112610264576020600b54604051908152f35b60243590811515820361026457565b34610264576040366003190112610264576004356110d76110ac565b6110e033611f9b565b815f52600e6020526111018160405f209060ff801983541691151516179055565b1515907f784afb92b74f2c9ccd3cb1b9697580a90fadab59d6640bbb915d1637bfbbf0085f80a3005b34610264575f3660031901126102645760206040515f8152f35b346102645760403660031901126102645761115d61024e565b6111656110ac565b6001600160a01b0382169182156111e0578161119f6111b092335f52600160205260405f209060018060a01b03165f5260205260405f2090565b9060ff801983541691151516179055565b60405190151581527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b62ced3e160e81b5f525f60045260245ffd5b604051906112016020836103e1565b5f8252565b34610264575f366003190112610264576105e36040516112276040826103e1565b601881527f5275627953636f7265204261646765733a204b6174616e6100000000000000006020820152604051918291602083526020830190610557565b34610264576020366003190112610264576004355f52600e602052602060ff60405f2054166040519015158152f35b9181601f84011215610264578235916001600160401b038311610264576020808501948460051b01011161026457565b34610264576040366003190112610264576004356001600160401b038111610264576112f4903690600401611294565b6024356001600160401b03811161026457611313903690600401611294565b9061131d33611eb5565b81830361135c575f5b838110156109cc576001906113568160051b870135611350611349848888611ba9565b36916106b7565b9061160b565b01611326565b60405162461bcd60e51b815260206004820152600e60248201526d496e76616c696420706172616d7360901b6044820152606490fd5b34610264576020366003190112610264576004355f526006602052602060405f2054604051908152f35b34610264575f3660031901126102645760206040517f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a68152f35b34610264576040366003190112610264576109cc600435611415610268565b9061142f610a07825f526005602052600160405f20015490565b611df1565b3461026457604036600319011261026457602060ff610fde61145461024e565b61145c610268565b6001600160a01b039182165f9081526001865260408082209290931681526020919091522090565b346102645760a03660031901126102645761149d61024e565b6114a5610268565b60443590606435926084356001600160401b038111610264576114cc9036906004016106ed565b926001600160a01b0382163381141580611567575b611551576001600160a01b0384161561153e571561152c576109cc9461152460405192600184526020840152604083019160018352606084015260808301604052565b9290916122a3565b626a0d4560e21b5f525f60045260245ffd5b632bfa23e760e11b5f525f60045260245ffd5b63711bec9160e11b5f523360045260245260445ffd5b505f81815260016020908152604080832033845290915290205460ff16156114e1565b34610264575f3660031901126102645760206040517f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b9298152f35b34610264575f366003190112610264576105e36040516115e56040826103e1565b6005815264302e302e3160d81b6020820152604051918291602083526020830190610557565b9061161533611eb5565b815f52600960205260405f2081516001600160401b0381116103dc576116458161163f8454610375565b84611d12565b6020601f821160011461169d57816116769493926107a9925f9161080957508160011b915f199060031b1c19161790565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3565b601f198216906116b0845f5260205f2090565b915f5b8181106116d857509183916116769695946001941061084e575050811b0190556107ac565b9192602060018192868a0151815501940192016116b3565b805191908290602001825e015f815290565b61171290604051918280926116f0565b03902090565b939291906001600160a01b0385163381141580611751575b611551576001600160a01b0382161561153e571561152c57610439946122a3565b505f81815260016020908152604080832033845290915290205460ff1615611730565b3d1561179e573d906117858261069c565b9161179360405193846103e1565b82523d5f602084013e565b606090565b156117aa57565b60405162461bcd60e51b81526020600482015260146024820152732330b4b632b2103a379039b2b7321022ba3432b960611b6044820152606490fd5b604051906117f56020836103e1565b5f808352366020840137565b9061180b826108ce565b61181860405191826103e1565b8281528092611829601f19916108ce565b0190602036910137565b634e487b7160e01b5f52603260045260245ffd5b8051156118545760200190565b611833565b80518210156118545760209160051b010190565b919091805183518082036118e75750506118878151611801565b905f5b81518110156118e057806118cf60019260051b60208082870101519189010151905f918252602082815260408084206001600160a01b03909316845291905290205490565b6118d98286611859565b520161188a565b5090925050565b635b05999160e01b5f5260045260245260445ffd5b90916002600a5414611ab8576119e06119e5916002600a556119da604085019561192b60018851511015611ac7565b611938600b543414611b05565b335f908152600f602052604090206119d290546119686119ca8a5160405161197681611968602082018095611b48565b03601f1981018352826103e1565b5190206040519283916020830195338760609194939260808201957f66fe4d8b6c8e0542c70e2a244bf04681bb936b001f1be0f079a80e77158a8474835260018060a01b0316602083015260408201520152565b519020611e79565b9236916106b7565b90611e9f565b611eb5565b80516001600160a01b03165f908152600f60205260409020611a078154611b89565b9055815160018151115f14611a8a57508051611a36906001600160a01b03168351611a306111f2565b91612126565b805160209091015191516040516001600160a01b03909216917fff0a1dc048ef1a5e9e2845c6bb6cafd8b8531f3cb15368f4a708dec7d7bc789f918190611a7d9082610b42565b0390a36104396001600a55565b8151611ab39190611aa4906001600160a01b031691611847565b51611aad6111f2565b916120bd565b611a36565b633ee5aeb560e01b5f5260045ffd5b15611ace57565b60405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964204e46542069647360881b6044820152606490fd5b15611b0c57565b60405162461bcd60e51b815260206004820152601460248201527315dc9bdb99c81c185e5b595b9d08185b5bdd5b9d60621b6044820152606490fd5b80516020909101905f5b818110611b5f5750505090565b8251845260209384019390920191600101611b52565b634e487b7160e01b5f52601160045260245ffd5b9060018201809211611b9757565b611b75565b91908201809211611b9757565b91908110156118545760051b81013590601e19813603018212156102645701908135916001600160401b038311610264576020018236038113610264579190565b5f526009602052611bfd60405f206104b9565b805115611cb95760405190815f600854611c1681610375565b9060018116908115611c955750600114611c39575b506119689061058c936116f0565b905060085f527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35f905b828210611c79575050810160200161058c611c2b565b6020919293508060019154838589010152019101849291611c63565b60ff19166020858101919091528215159092028401909101915061058c9050611c2b565b5061058c610402565b601f8111611cce575050565b60085f5260205f20906020601f840160051c83019310611d08575b601f0160051c01905b818110611cfd575050565b5f8155600101611cf2565b9091508190611ce9565b601f8211611d1f57505050565b5f5260205f20906020601f840160051c83019310611d57575b601f0160051c01905b818110611d4c575050565b5f8155600101611d41565b9091508190611d38565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff16611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916600117905533916001600160a01b0316907f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b50505f90565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff1615611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916905533916001600160a01b0316907ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b604290611e84612353565b906040519161190160f01b8352600283015260228201522090565b61058c91611eac9161246f565b909291926124c7565b6001600160a01b0381165f9081527f15a28d26fa1bf736cf7edc9922607171ccb09c3c73b808e7772a3013e068a522602052604090205460ff1615611ef75750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6602452604490fd5b6001600160a01b0381165f9081527f05b8ccbb9d4d8fb16ea74ce3c29a41f1b461fbdaff4714a0d9a8eb05499746bc602052604090205460ff1615611f7d5750565b63e2517d3f60e01b5f5260018060a01b03166004525f60245260445ffd5b6001600160a01b0381165f9081527fe790de7705c8ebaa80068cd4fc0a095afd63ddb3e1cbffe9ca6f4baedbd7b739602052604090205460ff1615611fdd5750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929602452604490fd5b90815f52600560205260ff6120498260405f209060018060a01b03165f5260205260405f2090565b541615612054575050565b63e2517d3f60e01b5f5260018060a01b031660045260245260445ffd5b1561207857565b60405162461bcd60e51b815260206004820152601b60248201527f596f7520616c72656164792068617665207468697320626164676500000000006044820152606490fd5b5f828152602081815260408083206001600160a01b038516845290915290209192916120ea905415612071565b6001600160a01b0381161561153e57610439926040519060018252602082015260408101916001835260016060830152608082016040526121ba565b9291906121338151611801565b905f5b815160ff8216908110156121a15790600161218f8361218961218361215d60ff9789611859565b518c5f918252602082815260408084206001600160a01b03909316845291905290205490565b15612071565b86611859565b521660ff8114611b9757600101612136565b50939493506001600160a01b0384161561153e57610439935b90929391935f5b8451811015612245576121d48186611859565b515f908152600e602052604090205460ff16158061223e575b6121f9576001016121c1565b60405162461bcd60e51b815260206004820152601760248201527f5468697320746f6b656e206f6e6c7920666f7220796f750000000000000000006044820152606490fd5b505f6121ed565b50919390926122568282865f6129ad565b6001600160a01b03841661226b575b50505050565b8051600103612293579060208061228a95930151910151915f33612844565b5f808080612265565b61229e935f33612715565b61228a565b93909491925f5b84518110156122f4576122bd8186611859565b515f908152600e602052604090205460ff1615806122e2575b6121f9576001016122aa565b506001600160a01b03861615156122d6565b509092939194612306828683866129ad565b6001600160a01b03811661231c575b5050505050565b8451600103612342576020806123389601519201519233612844565b5f80808080612315565b61234e94919233612715565b612338565b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480612446575b156123ae577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815261244060c0826103e1565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000004614612385565b815191906041830361249f576124989250602082015190606060408401519301515f1a906128e2565b9192909190565b50505f9160029190565b600411156124b357565b634e487b7160e01b5f52602160045260245ffd5b6124d0816124a9565b806124d9575050565b6124e2816124a9565b600181036124f95763f645eedf60e01b5f5260045ffd5b612502816124a9565b6002810361251d575063fce698f760e01b5f5260045260245ffd5b806125296003926124a9565b146125315750565b6335e2f38360e21b5f5260045260245ffd5b60ff81146125545761058c9061296f565b50604051600354815f61256683610375565b80835292600181169081156125e9575060011461258a575b61058c925003826103e1565b5060035f90815290917fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8183106125cd57505090602061058c9282010161257e565b60209193508060019154838588010152019101909183926125b5565b6020925061058c94915060ff191682840152151560051b82010161257e565b60ff81146126195761058c9061296f565b50604051600454815f61262b83610375565b80835292600181169081156125e9575060011461264e5761058c925003826103e1565b5060045f90815290917f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b81831061269157505090602061058c9282010161257e565b6020919350806001915483858801015201910190918392612679565b90816020910312610264575161058c816102da565b6001600160a01b0391821681529116602082015260a06040820181905261058c949193919261270792916126f99190860190610b0f565b908482036060860152610b0f565b916080818403910152610557565b9091949293853b612729575b505050505050565b60209361274b91604051968795869563bc197c8160e01b8752600487016126c2565b03815f6001600160a01b0387165af15f91816127da575b5061279c5750612770611774565b805191908261279557632bfa23e760e11b5f526001600160a01b03821660045260245ffd5b9050602001fd5b6001600160e01b0319166343e6837f60e01b016127bf57505f8080808080612721565b632bfa23e760e11b5f526001600160a01b031660045260245ffd5b6127fd91925060203d602011612804575b6127f581836103e1565b8101906126ad565b905f612762565b503d6127eb565b6001600160a01b039182168152911660208201526040810191909152606081019190915260a06080820181905261058c92910190610557565b9091949293853b61285757505050505050565b60209361287991604051968795869563f23a6e6160e01b87526004870161280b565b03815f6001600160a01b0387165af15f91816128c1575b5061289e5750612770611774565b6001600160e01b031916630dc5919f60e01b016127bf57505f8080808080612721565b6128db91925060203d602011612804576127f581836103e1565b905f612890565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612964579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612959575f516001600160a01b0381161561294f57905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f9160039190565b60ff811690601f821161299e576040519161298b6040846103e1565b6020808452838101919036833783525290565b632cd44ac360e21b5f5260045ffd5b9392936129bc85848484612ac4565b6001600160a01b031615612a31575b6001600160a01b0316156129de57509050565b5f805b8251821015612a1f576001908260051b90612a10602080848a01015193870101515f52600660205260405f2090565b828154039055019101906129e1565b91505061043991925060075403600755565b915f90815b8351831015612a8257612a7a6001918460051b90612a68602080848c01015193890101515f52600660205260405f2090565b612a73838254611b9c565b9055611b9c565b920191612a36565b612a9a91949250612a9590600754611b9c565b600755565b6129cb565b9091612ab661058c93604084526040840190610b0f565b916020818403910152610b0f565b9392918051835190818103612c7e5750505f5b8151811015612bd8578060051b90602080838501015192860101518460018060a01b038916612b5b575b6001936001600160a01b038216612b1c575b50505001612ad7565b612b5191612b34612b49925f525f60205260405f2090565b9060018060a01b03165f5260205260405f2090565b918254611b9c565b90555f8481612b13565b509091612b7388612b34835f525f60205260405f2090565b54828110612ba157829160019493879203612b998b612b34845f525f60205260405f2090565b559350612b01565b6040516303dee4c560e01b81526001600160a01b038a16600482015260248101919091526044810183905260648101829052608490fd5b508051939493919291600103612c3b576020908101519181015160408051938452918301526001600160a01b03928316939092169133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291819081015b0390a4565b6040516001600160a01b03938416949093169233927f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb928291612c369183612a9f565b635b05999160e01b5f5260045260245260445ffdfea264697066735822122016c88d9aa89d5c43f1b260e79f12759fc7792e53d1b215c2a2ce0abbe79a56b864736f6c634300081c00332f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d15a28d26fa1bf736cf7edc9922607171ccb09c3c73b808e7772a3013e068a522e790de7705c8ebaa80068cd4fc0a095afd63ddb3e1cbffe9ca6f4baedbd7b73905b8ccbb9d4d8fb16ea74ce3c29a41f1b461fbdaff4714a0d9a8eb05499746bc0000000000000000000000000d0d5ff3cfef8b7b2b1cac6b6c27fd0846c09361000000000000000000000000381c031baa5995d0cc52386508050ac947780815000000000000000000000000381c031baa5995d0cc52386508050ac94778081500000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000007697066733a2f2f00000000000000000000000000000000000000000000000000
Deployed Bytecode
0x60806040526004361015610011575f80fd5b5f3560e01c8062fdd58e1461024957806301ffc9a71461024457806306fdde031461023f5780630e89341c146101c7578063162094c41461023a57806318160ddd14610235578063248a9ca3146102305780632eb2c2d61461022b5780632f2ff15d1461022657806336568abe146102215780633ccfd60b1461021c5780634e1273f4146102175780634f558e791461021257806355f804b31461020d5780636834e3a8146102085780637c2ccc451461020357806384b0196e146101fe57806391b7f5ed146101f957806391d14854146101f457806395d89b41146101ef57806398d5fdca146101ea5780639b3e5573146101e5578063a217fddf146101e0578063a22cb465146101db578063a3f4df7e146101a9578063b93c3770146101d6578063ba772d8b146101d1578063bd85b039146101cc578063c87b56dd146101c7578063d5391393146101c2578063d547741f146101bd578063e985e9c5146101b8578063f242432a146101b3578063f5b541a6146101ae578063f76f8d78146101a95763ffa1ad74146101a4575f80fd5b6115c4565b611206565b61158a565b611484565b611434565b6113f6565b6113bc565b610669565b611392565b6112c4565b611265565b611144565b61112a565b6110bb565b61108f565b610fea565b610f9b565b610f4e565b610e8e565b610ded565b610d88565b610c3e565b610c12565b610b53565b610a57565b610a13565b6109ce565b610942565b61089b565b61087e565b610708565b61058f565b6102ec565b610292565b600435906001600160a01b038216820361026457565b5f80fd5b602435906001600160a01b038216820361026457565b35906001600160a01b038216820361026457565b346102645760403660031901126102645760206102d16102b061024e565b6024355f525f835260405f209060018060a01b03165f5260205260405f2090565b54604051908152f35b6001600160e01b031981160361026457565b3461026457602036600319011261026457600435610309816102da565b63ffffffff60e01b16637965db0b60e01b8114908115610332575b506040519015158152602090f35b636cdb3d1360e11b811491508115610364575b8115610353575b505f610324565b6301ffc9a760e01b1490505f61034c565b6303a24d0760e21b81149150610345565b90600182811c921680156103a3575b602083101461038f57565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610384565b634e487b7160e01b5f52604160045260245ffd5b606081019081106001600160401b038211176103dc57604052565b6103ad565b90601f801991011681019081106001600160401b038211176103dc57604052565b604051905f826002549161041583610375565b808352926001811690811561049a575060011461043b575b610439925003836103e1565b565b5060025f90815290917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b81831061047e5750509060206104399282010161042d565b6020919350806001915483858901015201910190918492610466565b6020925061043994915060ff191682840152151560051b82010161042d565b9060405191825f8254926104cc84610375565b808452936001811690811561053557506001146104f1575b50610439925003836103e1565b90505f9291925260205f20905f915b818310610519575050906020610439928201015f6104e4565b6020919350806001915483858901015201910190918492610500565b90506020925061043994915060ff191682840152151560051b8201015f6104e4565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b90602061058c928181520190610557565b90565b34610264575f366003190112610264576040515f600c546105af81610375565b808452906001811690811561064557506001146105e7575b6105e3836105d7818503826103e1565b6040519182918261057b565b0390f35b600c5f9081527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7939250905b80821061062b575090915081016020016105d76105c7565b919260018160209254838588010152019101909291610613565b60ff191660208086019190915291151560051b840190910191506105d790506105c7565b34610264576020366003190112610264576105e3610688600435611bea565b604051918291602083526020830190610557565b6001600160401b0381116103dc57601f01601f191660200190565b9291926106c38261069c565b916106d160405193846103e1565b829481845281830111610264578281602093845f960137010152565b9080601f830112156102645781602061058c933591016106b7565b34610264576040366003190112610264576004356024356001600160401b0381116102645761073b9036906004016106ed565b9061074533611eb5565b805f52600960205260405f20918051926001600160401b0384116103dc57610777846107718354610375565b83611d12565b602093601f811160011461081457806107a9916107e295965f91610809575b508160011b915f199060031b1c19161790565b90555b827f6bb7ff708619ba0610cba295a58592e0451dee2622938c8755667688daf3529b6107da6105d783611bea565b0390a2611702565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3005b90508401515f610796565b601f198116610826835f5260205f2090565b905f5b8181106108665750906107e2959683600194931061084e575b5050811b0190556107ac565b8501515f1960f88460031b161c191690555f80610842565b85880151835560209788019760019093019201610829565b34610264575f366003190112610264576020600754604051908152f35b346102645760203660031901126102645760206108c66004355f526005602052600160405f20015490565b604051908152f35b6001600160401b0381116103dc5760051b60200190565b9080601f830112156102645781356108fc816108ce565b9261090a60405194856103e1565b81845260208085019260051b82010192831161026457602001905b8282106109325750505090565b8135815260209182019101610925565b346102645760a03660031901126102645761095b61024e565b610963610268565b906044356001600160401b038111610264576109839036906004016108e5565b6064356001600160401b038111610264576109a29036906004016108e5565b90608435936001600160401b038511610264576109c66109cc9536906004016106ed565b93611718565b005b34610264576040366003190112610264576109cc6004356109ed610268565b90610a0e610a07825f526005602052600160405f20015490565b3390612021565b611d61565b3461026457604036600319011261026457600435610a2f610268565b336001600160a01b03821603610a48576109cc91611df1565b63334bd91960e11b5f5260045ffd5b34610264575f36600319011261026457610a7033611f3b565b478015610aca57610ac581610ab55f8080807f11e9d9f7a772129e26cb0560945658c96b41c42ac6712d233e20c894bfcd00fd97335af1610aaf611774565b506117a3565b6040519081529081906020820190565b0390a1005b60405162461bcd60e51b815260206004820152601760248201527f5a65726f20616d6f756e7420746f2077697468647261770000000000000000006044820152606490fd5b90602080835192838152019201905f5b818110610b2c5750505090565b8251845260209384019390920191600101610b1f565b90602061058c928181520190610b0f565b34610264576040366003190112610264576004356001600160401b038111610264573660238201121561026457806004013590610b8f826108ce565b91610b9d60405193846103e1565b8083526024602084019160051b8301019136831161026457602401905b828210610bfa57836024356001600160401b038111610264576105e391610be8610bee9236906004016108e5565b9061186d565b60405191829182610b42565b60208091610c078461027e565b815201910190610bba565b34610264576020366003190112610264576004355f526006602052602060405f20541515604051908152f35b34610264576020366003190112610264576004356001600160401b03811161026457610c6e9036906004016106ed565b610c7733611f9b565b80516001600160401b0381116103dc57610c9b81610c96600854610375565b611cc2565b6020601f8211600114610d045781610cd39392610ccb925f91610cf957508160011b915f199060031b1c19161790565b600855611702565b7ff9c7803e94e0d3c02900d8a90893a6d5e90dd04d32a4cfe825520f82bf9f32f65f80a2005b90508301515f610796565b60085f52601f198216907ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3915f5b818110610d705750918391610cd3959460019410610d58575b5050811b01600855611702565b8401515f1960f88460031b161c191690555f80610d4b565b91926020600181928689015181550194019201610d32565b34610264576020366003190112610264576001600160a01b03610da961024e565b165f52600f602052602060405f2054604051908152f35b9181601f84011215610264578235916001600160401b038311610264576020838186019501011161026457565b6040366003190112610264576004356001600160401b03811161026457606060031982360301126102645760405190610e25826103c1565b610e318160040161027e565b8252602481013560208301526044810135906001600160401b038211610264576004610e6092369201016108e5565b6040820152602435906001600160401b03821161026457610e886109cc923690600401610dc0565b916118fc565b34610264575f36600319011261026457610f20610eca7f5275627953636f7265204261646765733a204b6174616e610000000000000018612543565b6105e3610ef67f302e302e31000000000000000000000000000000000000000000000000000005612608565b610f2e610f016117e6565b91604051958695600f60f81b875260e0602088015260e0870190610557565b908582036040870152610557565b904660608501523060808501525f60a085015283820360c0850152610b0f565b34610264576020366003190112610264577f66cbca4f3c64fecf1dcb9ce094abcf7f68c3450a1d4e3a8e917dd621edb4ebe06020600435610f8e33611f9b565b80600b55604051908152a1005b3461026457604036600319011261026457602060ff610fde600435610fbe610268565b905f526005845260405f209060018060a01b03165f5260205260405f2090565b54166040519015158152f35b34610264575f366003190112610264576040515f600d5461100a81610375565b80845290600181169081156106455750600114611031576105e3836105d7818503826103e1565b600d5f9081527fd7b6990105719101dabeb77144f2a3385c8033acd3af97e9423a695e81ad1eb5939250905b808210611075575090915081016020016105d76105c7565b91926001816020925483858801015201910190929161105d565b34610264575f366003190112610264576020600b54604051908152f35b60243590811515820361026457565b34610264576040366003190112610264576004356110d76110ac565b6110e033611f9b565b815f52600e6020526111018160405f209060ff801983541691151516179055565b1515907f784afb92b74f2c9ccd3cb1b9697580a90fadab59d6640bbb915d1637bfbbf0085f80a3005b34610264575f3660031901126102645760206040515f8152f35b346102645760403660031901126102645761115d61024e565b6111656110ac565b6001600160a01b0382169182156111e0578161119f6111b092335f52600160205260405f209060018060a01b03165f5260205260405f2090565b9060ff801983541691151516179055565b60405190151581527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b62ced3e160e81b5f525f60045260245ffd5b604051906112016020836103e1565b5f8252565b34610264575f366003190112610264576105e36040516112276040826103e1565b601881527f5275627953636f7265204261646765733a204b6174616e6100000000000000006020820152604051918291602083526020830190610557565b34610264576020366003190112610264576004355f52600e602052602060ff60405f2054166040519015158152f35b9181601f84011215610264578235916001600160401b038311610264576020808501948460051b01011161026457565b34610264576040366003190112610264576004356001600160401b038111610264576112f4903690600401611294565b6024356001600160401b03811161026457611313903690600401611294565b9061131d33611eb5565b81830361135c575f5b838110156109cc576001906113568160051b870135611350611349848888611ba9565b36916106b7565b9061160b565b01611326565b60405162461bcd60e51b815260206004820152600e60248201526d496e76616c696420706172616d7360901b6044820152606490fd5b34610264576020366003190112610264576004355f526006602052602060405f2054604051908152f35b34610264575f3660031901126102645760206040517f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a68152f35b34610264576040366003190112610264576109cc600435611415610268565b9061142f610a07825f526005602052600160405f20015490565b611df1565b3461026457604036600319011261026457602060ff610fde61145461024e565b61145c610268565b6001600160a01b039182165f9081526001865260408082209290931681526020919091522090565b346102645760a03660031901126102645761149d61024e565b6114a5610268565b60443590606435926084356001600160401b038111610264576114cc9036906004016106ed565b926001600160a01b0382163381141580611567575b611551576001600160a01b0384161561153e571561152c576109cc9461152460405192600184526020840152604083019160018352606084015260808301604052565b9290916122a3565b626a0d4560e21b5f525f60045260245ffd5b632bfa23e760e11b5f525f60045260245ffd5b63711bec9160e11b5f523360045260245260445ffd5b505f81815260016020908152604080832033845290915290205460ff16156114e1565b34610264575f3660031901126102645760206040517f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b9298152f35b34610264575f366003190112610264576105e36040516115e56040826103e1565b6005815264302e302e3160d81b6020820152604051918291602083526020830190610557565b9061161533611eb5565b815f52600960205260405f2081516001600160401b0381116103dc576116458161163f8454610375565b84611d12565b6020601f821160011461169d57816116769493926107a9925f9161080957508160011b915f199060031b1c19161790565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3565b601f198216906116b0845f5260205f2090565b915f5b8181106116d857509183916116769695946001941061084e575050811b0190556107ac565b9192602060018192868a0151815501940192016116b3565b805191908290602001825e015f815290565b61171290604051918280926116f0565b03902090565b939291906001600160a01b0385163381141580611751575b611551576001600160a01b0382161561153e571561152c57610439946122a3565b505f81815260016020908152604080832033845290915290205460ff1615611730565b3d1561179e573d906117858261069c565b9161179360405193846103e1565b82523d5f602084013e565b606090565b156117aa57565b60405162461bcd60e51b81526020600482015260146024820152732330b4b632b2103a379039b2b7321022ba3432b960611b6044820152606490fd5b604051906117f56020836103e1565b5f808352366020840137565b9061180b826108ce565b61181860405191826103e1565b8281528092611829601f19916108ce565b0190602036910137565b634e487b7160e01b5f52603260045260245ffd5b8051156118545760200190565b611833565b80518210156118545760209160051b010190565b919091805183518082036118e75750506118878151611801565b905f5b81518110156118e057806118cf60019260051b60208082870101519189010151905f918252602082815260408084206001600160a01b03909316845291905290205490565b6118d98286611859565b520161188a565b5090925050565b635b05999160e01b5f5260045260245260445ffd5b90916002600a5414611ab8576119e06119e5916002600a556119da604085019561192b60018851511015611ac7565b611938600b543414611b05565b335f908152600f602052604090206119d290546119686119ca8a5160405161197681611968602082018095611b48565b03601f1981018352826103e1565b5190206040519283916020830195338760609194939260808201957f66fe4d8b6c8e0542c70e2a244bf04681bb936b001f1be0f079a80e77158a8474835260018060a01b0316602083015260408201520152565b519020611e79565b9236916106b7565b90611e9f565b611eb5565b80516001600160a01b03165f908152600f60205260409020611a078154611b89565b9055815160018151115f14611a8a57508051611a36906001600160a01b03168351611a306111f2565b91612126565b805160209091015191516040516001600160a01b03909216917fff0a1dc048ef1a5e9e2845c6bb6cafd8b8531f3cb15368f4a708dec7d7bc789f918190611a7d9082610b42565b0390a36104396001600a55565b8151611ab39190611aa4906001600160a01b031691611847565b51611aad6111f2565b916120bd565b611a36565b633ee5aeb560e01b5f5260045ffd5b15611ace57565b60405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964204e46542069647360881b6044820152606490fd5b15611b0c57565b60405162461bcd60e51b815260206004820152601460248201527315dc9bdb99c81c185e5b595b9d08185b5bdd5b9d60621b6044820152606490fd5b80516020909101905f5b818110611b5f5750505090565b8251845260209384019390920191600101611b52565b634e487b7160e01b5f52601160045260245ffd5b9060018201809211611b9757565b611b75565b91908201809211611b9757565b91908110156118545760051b81013590601e19813603018212156102645701908135916001600160401b038311610264576020018236038113610264579190565b5f526009602052611bfd60405f206104b9565b805115611cb95760405190815f600854611c1681610375565b9060018116908115611c955750600114611c39575b506119689061058c936116f0565b905060085f527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35f905b828210611c79575050810160200161058c611c2b565b6020919293508060019154838589010152019101849291611c63565b60ff19166020858101919091528215159092028401909101915061058c9050611c2b565b5061058c610402565b601f8111611cce575050565b60085f5260205f20906020601f840160051c83019310611d08575b601f0160051c01905b818110611cfd575050565b5f8155600101611cf2565b9091508190611ce9565b601f8211611d1f57505050565b5f5260205f20906020601f840160051c83019310611d57575b601f0160051c01905b818110611d4c575050565b5f8155600101611d41565b9091508190611d38565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff16611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916600117905533916001600160a01b0316907f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b50505f90565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff1615611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916905533916001600160a01b0316907ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b604290611e84612353565b906040519161190160f01b8352600283015260228201522090565b61058c91611eac9161246f565b909291926124c7565b6001600160a01b0381165f9081527f15a28d26fa1bf736cf7edc9922607171ccb09c3c73b808e7772a3013e068a522602052604090205460ff1615611ef75750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6602452604490fd5b6001600160a01b0381165f9081527f05b8ccbb9d4d8fb16ea74ce3c29a41f1b461fbdaff4714a0d9a8eb05499746bc602052604090205460ff1615611f7d5750565b63e2517d3f60e01b5f5260018060a01b03166004525f60245260445ffd5b6001600160a01b0381165f9081527fe790de7705c8ebaa80068cd4fc0a095afd63ddb3e1cbffe9ca6f4baedbd7b739602052604090205460ff1615611fdd5750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929602452604490fd5b90815f52600560205260ff6120498260405f209060018060a01b03165f5260205260405f2090565b541615612054575050565b63e2517d3f60e01b5f5260018060a01b031660045260245260445ffd5b1561207857565b60405162461bcd60e51b815260206004820152601b60248201527f596f7520616c72656164792068617665207468697320626164676500000000006044820152606490fd5b5f828152602081815260408083206001600160a01b038516845290915290209192916120ea905415612071565b6001600160a01b0381161561153e57610439926040519060018252602082015260408101916001835260016060830152608082016040526121ba565b9291906121338151611801565b905f5b815160ff8216908110156121a15790600161218f8361218961218361215d60ff9789611859565b518c5f918252602082815260408084206001600160a01b03909316845291905290205490565b15612071565b86611859565b521660ff8114611b9757600101612136565b50939493506001600160a01b0384161561153e57610439935b90929391935f5b8451811015612245576121d48186611859565b515f908152600e602052604090205460ff16158061223e575b6121f9576001016121c1565b60405162461bcd60e51b815260206004820152601760248201527f5468697320746f6b656e206f6e6c7920666f7220796f750000000000000000006044820152606490fd5b505f6121ed565b50919390926122568282865f6129ad565b6001600160a01b03841661226b575b50505050565b8051600103612293579060208061228a95930151910151915f33612844565b5f808080612265565b61229e935f33612715565b61228a565b93909491925f5b84518110156122f4576122bd8186611859565b515f908152600e602052604090205460ff1615806122e2575b6121f9576001016122aa565b506001600160a01b03861615156122d6565b509092939194612306828683866129ad565b6001600160a01b03811661231c575b5050505050565b8451600103612342576020806123389601519201519233612844565b5f80808080612315565b61234e94919233612715565b612338565b307f000000000000000000000000f57cb671d50535126694ce5cc3cebe3f327948966001600160a01b03161480612446575b156123ae577f2bc3a2fa25488e46acf6c13932ff55ee909b70cdf2d029c5247019e9f0e4d48990565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527fe8f058afe6e32abe76df00bdc41315818012c21ece42c2f43ba3dcf364cde20d60408201527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc19916381188560608201524660808201523060a082015260a0815261244060c0826103e1565b51902090565b507f00000000000000000000000000000000000000000000000000000000000b67d24614612385565b815191906041830361249f576124989250602082015190606060408401519301515f1a906128e2565b9192909190565b50505f9160029190565b600411156124b357565b634e487b7160e01b5f52602160045260245ffd5b6124d0816124a9565b806124d9575050565b6124e2816124a9565b600181036124f95763f645eedf60e01b5f5260045ffd5b612502816124a9565b6002810361251d575063fce698f760e01b5f5260045260245ffd5b806125296003926124a9565b146125315750565b6335e2f38360e21b5f5260045260245ffd5b60ff81146125545761058c9061296f565b50604051600354815f61256683610375565b80835292600181169081156125e9575060011461258a575b61058c925003826103e1565b5060035f90815290917fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8183106125cd57505090602061058c9282010161257e565b60209193508060019154838588010152019101909183926125b5565b6020925061058c94915060ff191682840152151560051b82010161257e565b60ff81146126195761058c9061296f565b50604051600454815f61262b83610375565b80835292600181169081156125e9575060011461264e5761058c925003826103e1565b5060045f90815290917f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b81831061269157505090602061058c9282010161257e565b6020919350806001915483858801015201910190918392612679565b90816020910312610264575161058c816102da565b6001600160a01b0391821681529116602082015260a06040820181905261058c949193919261270792916126f99190860190610b0f565b908482036060860152610b0f565b916080818403910152610557565b9091949293853b612729575b505050505050565b60209361274b91604051968795869563bc197c8160e01b8752600487016126c2565b03815f6001600160a01b0387165af15f91816127da575b5061279c5750612770611774565b805191908261279557632bfa23e760e11b5f526001600160a01b03821660045260245ffd5b9050602001fd5b6001600160e01b0319166343e6837f60e01b016127bf57505f8080808080612721565b632bfa23e760e11b5f526001600160a01b031660045260245ffd5b6127fd91925060203d602011612804575b6127f581836103e1565b8101906126ad565b905f612762565b503d6127eb565b6001600160a01b039182168152911660208201526040810191909152606081019190915260a06080820181905261058c92910190610557565b9091949293853b61285757505050505050565b60209361287991604051968795869563f23a6e6160e01b87526004870161280b565b03815f6001600160a01b0387165af15f91816128c1575b5061289e5750612770611774565b6001600160e01b031916630dc5919f60e01b016127bf57505f8080808080612721565b6128db91925060203d602011612804576127f581836103e1565b905f612890565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612964579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612959575f516001600160a01b0381161561294f57905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f9160039190565b60ff811690601f821161299e576040519161298b6040846103e1565b6020808452838101919036833783525290565b632cd44ac360e21b5f5260045ffd5b9392936129bc85848484612ac4565b6001600160a01b031615612a31575b6001600160a01b0316156129de57509050565b5f805b8251821015612a1f576001908260051b90612a10602080848a01015193870101515f52600660205260405f2090565b828154039055019101906129e1565b91505061043991925060075403600755565b915f90815b8351831015612a8257612a7a6001918460051b90612a68602080848c01015193890101515f52600660205260405f2090565b612a73838254611b9c565b9055611b9c565b920191612a36565b612a9a91949250612a9590600754611b9c565b600755565b6129cb565b9091612ab661058c93604084526040840190610b0f565b916020818403910152610b0f565b9392918051835190818103612c7e5750505f5b8151811015612bd8578060051b90602080838501015192860101518460018060a01b038916612b5b575b6001936001600160a01b038216612b1c575b50505001612ad7565b612b5191612b34612b49925f525f60205260405f2090565b9060018060a01b03165f5260205260405f2090565b918254611b9c565b90555f8481612b13565b509091612b7388612b34835f525f60205260405f2090565b54828110612ba157829160019493879203612b998b612b34845f525f60205260405f2090565b559350612b01565b6040516303dee4c560e01b81526001600160a01b038a16600482015260248101919091526044810183905260648101829052608490fd5b508051939493919291600103612c3b576020908101519181015160408051938452918301526001600160a01b03928316939092169133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291819081015b0390a4565b6040516001600160a01b03938416949093169233927f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb928291612c369183612a9f565b635b05999160e01b5f5260045260245260445ffdfea264697066735822122016c88d9aa89d5c43f1b260e79f12759fc7792e53d1b215c2a2ce0abbe79a56b864736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000d0d5ff3cfef8b7b2b1cac6b6c27fd0846c09361000000000000000000000000381c031baa5995d0cc52386508050ac947780815000000000000000000000000381c031baa5995d0cc52386508050ac94778081500000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000007697066733a2f2f00000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : admin (address): 0x0d0D5Ff3cFeF8B7B2b1cAC6B6C27Fd0846c09361
Arg [1] : operator (address): 0x381c031bAA5995D0Cc52386508050Ac947780815
Arg [2] : minter (address): 0x381c031bAA5995D0Cc52386508050Ac947780815
Arg [3] : baseURI (string): ipfs://
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 0000000000000000000000000d0d5ff3cfef8b7b2b1cac6b6c27fd0846c09361
Arg [1] : 000000000000000000000000381c031baa5995d0cc52386508050ac947780815
Arg [2] : 000000000000000000000000381c031baa5995d0cc52386508050ac947780815
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000007
Arg [5] : 697066733a2f2f00000000000000000000000000000000000000000000000000
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.