ETH Price: $3,994.64 (-2.45%)

Contract

0x0761b0827849abbf7b0cC09CE14e1C93D87f5004

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
22254492025-06-03 16:31:00147 days ago1748968260
0x0761b082...3D87f5004
 Contract Creation0 ETH

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
StaticMerkleRootWeightedMultisigIsmFactory

Compiler Version
v0.8.22+commit.4fc1097e

Optimization Enabled:
Yes with 999999 runs

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

/*@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@  HYPERLANE  @@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
@@@@@@@@@       @@@@@@@@*/

import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {AbstractMerkleRootMultisigIsm} from "./AbstractMerkleRootMultisigIsm.sol";
import {AbstractMessageIdMultisigIsm} from "./AbstractMessageIdMultisigIsm.sol";
import {AbstractStaticWeightedMultisigIsm} from "./AbstractWeightedMultisigIsm.sol";
import {AbstractMultisigIsm} from "./AbstractMultisigIsm.sol";
import {StaticWeightedValidatorSetFactory} from "../../libs/StaticWeightedValidatorSetFactory.sol";
import {MetaProxy} from "../../libs/MetaProxy.sol";

abstract contract AbstractMetaProxyWeightedMultisigIsm is
    AbstractStaticWeightedMultisigIsm
{
    /**
     * @inheritdoc AbstractStaticWeightedMultisigIsm
     */
    function validatorsAndThresholdWeight(
        bytes calldata /* _message*/
    ) public pure override returns (ValidatorInfo[] memory, uint96) {
        return abi.decode(MetaProxy.metadata(), (ValidatorInfo[], uint96));
    }
}

contract StaticMerkleRootWeightedMultisigIsm is
    AbstractMerkleRootMultisigIsm,
    AbstractMetaProxyWeightedMultisigIsm
{
    uint8 public constant moduleType =
        uint8(IInterchainSecurityModule.Types.WEIGHTED_MERKLE_ROOT_MULTISIG);
}

contract StaticMessageIdWeightedMultisigIsm is
    AbstractMessageIdMultisigIsm,
    AbstractMetaProxyWeightedMultisigIsm
{
    uint8 public constant moduleType =
        uint8(IInterchainSecurityModule.Types.WEIGHTED_MESSAGE_ID_MULTISIG);
}

contract StaticMerkleRootWeightedMultisigIsmFactory is
    StaticWeightedValidatorSetFactory
{
    function _deployImplementation() internal override returns (address) {
        return address(new StaticMerkleRootWeightedMultisigIsm());
    }
}

contract StaticMessageIdWeightedMultisigIsmFactory is
    StaticWeightedValidatorSetFactory
{
    function _deployImplementation() internal override returns (address) {
        return address(new StaticMessageIdWeightedMultisigIsm());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Create2.sol)

pragma solidity ^0.8.0;

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        require(address(this).balance >= amount, "Create2: insufficient balance");
        require(bytecode.length != 0, "Create2: bytecode length is zero");
        /// @solidity memory-safe-assembly
        assembly {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        require(addr != address(0), "Create2: Failed on deploy");
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ? ptr ...  ? ptr + 0x0B (start) ...  ? ptr + 0x20 ...  ? ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ?????????????????????????????????????????????????????????????? |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := keccak256(start, 85)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ? {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // ? `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // ? `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 12 of 27 : PackageVersioned.sol
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

/**
 * @title PackageVersioned
 * @notice Package version getter for contracts
 **/
abstract contract PackageVersioned {
    // GENERATED CODE - DO NOT EDIT
    string public constant PACKAGE_VERSION = "7.1.10";
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

interface IInterchainSecurityModule {
    enum Types {
        UNUSED,
        ROUTING,
        AGGREGATION,
        LEGACY_MULTISIG,
        MERKLE_ROOT_MULTISIG,
        MESSAGE_ID_MULTISIG,
        NULL, // used with relayer carrying no metadata
        CCIP_READ,
        ARB_L2_TO_L1,
        WEIGHTED_MERKLE_ROOT_MULTISIG,
        WEIGHTED_MESSAGE_ID_MULTISIG,
        OP_L2_TO_L1
    }

    /**
     * @notice Returns an enum that represents the type of security model
     * encoded by this ISM.
     * @dev Relayers infer how to fetch and format metadata.
     */
    function moduleType() external view returns (uint8);

    /**
     * @notice Defines a security model responsible for verifying interchain
     * messages based on the provided metadata.
     * @param _metadata Off-chain metadata provided by a relayer, specific to
     * the security model encoded by the module (e.g. validator signatures)
     * @param _message Hyperlane encoded interchain message
     * @return True if the message was verified
     */
    function verify(
        bytes calldata _metadata,
        bytes calldata _message
    ) external returns (bool);
}

interface ISpecifiesInterchainSecurityModule {
    function interchainSecurityModule()
        external
        view
        returns (IInterchainSecurityModule);
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

import {IInterchainSecurityModule} from "../IInterchainSecurityModule.sol";

interface IMultisigIsm is IInterchainSecurityModule {
    /**
     * @notice Returns the set of validators responsible for verifying _message
     * and the number of signatures required
     * @dev Can change based on the content of _message
     * @dev Signatures provided to `verify` must be consistent with validator ordering
     * @param _message Hyperlane formatted interchain message
     * @return validators The array of validator addresses
     * @return threshold The number of validator signatures needed
     */
    function validatorsAndThreshold(
        bytes calldata _message
    ) external view returns (address[] memory validators, uint8 threshold);
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

/*@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@  HYPERLANE  @@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
@@@@@@@@@       @@@@@@@@*/

import {IInterchainSecurityModule} from "../IInterchainSecurityModule.sol";

interface IStaticWeightedMultisigIsm is IInterchainSecurityModule {
    // ============ Structs ============

    // ValidatorInfo contains the signing address and weight of a validator
    struct ValidatorInfo {
        address signingAddress;
        uint96 weight;
    }

    /**
     * @notice Returns the validators and threshold weight for this ISM.
     * @param _message The message to be verified
     * @return validators The validators and their weights
     * @return thresholdWeight The threshold weight required to pass verification
     */
    function validatorsAndThresholdWeight(
        bytes calldata _message
    )
        external
        view
        returns (ValidatorInfo[] memory validators, uint96 thresholdWeight);
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

/**
 * Format of metadata:
 * [   0:  32] Origin merkle tree address
 * [  32:  36] Index of message ID in merkle tree
 * [  36:  68] Signed checkpoint message ID
 * [  68:1092] Merkle proof
 * [1092:1096] Signed checkpoint index (computed from proof and index)
 * [1096:????] Validator signatures (length := threshold * 65)
 */
library MerkleRootMultisigIsmMetadata {
    uint8 private constant ORIGIN_MERKLE_TREE_OFFSET = 0;
    uint8 private constant MESSAGE_INDEX_OFFSET = 32;
    uint8 private constant MESSAGE_ID_OFFSET = 36;
    uint8 private constant MERKLE_PROOF_OFFSET = 68;
    uint16 private constant MERKLE_PROOF_LENGTH = 32 * 32;
    uint16 private constant SIGNED_INDEX_OFFSET = 1092;
    uint16 private constant SIGNATURES_OFFSET = 1096;
    uint8 private constant SIGNATURE_LENGTH = 65;

    /**
     * @notice Returns the origin merkle tree hook of the signed checkpoint as bytes32.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Origin merkle tree hook of the signed checkpoint as bytes32
     */
    function originMerkleTreeHook(
        bytes calldata _metadata
    ) internal pure returns (bytes32) {
        return
            bytes32(
                _metadata[ORIGIN_MERKLE_TREE_OFFSET:ORIGIN_MERKLE_TREE_OFFSET +
                    32]
            );
    }

    /**
     * @notice Returns the index of the message being proven.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Index of the target message in the merkle tree.
     */
    function messageIndex(
        bytes calldata _metadata
    ) internal pure returns (uint32) {
        return
            uint32(
                bytes4(_metadata[MESSAGE_INDEX_OFFSET:MESSAGE_INDEX_OFFSET + 4])
            );
    }

    /**
     * @notice Returns the index of the signed checkpoint.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Index of the signed checkpoint
     */
    function signedIndex(
        bytes calldata _metadata
    ) internal pure returns (uint32) {
        return
            uint32(
                bytes4(_metadata[SIGNED_INDEX_OFFSET:SIGNED_INDEX_OFFSET + 4])
            );
    }

    /**
     * @notice Returns the message ID of the signed checkpoint.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Message ID of the signed checkpoint
     */
    function signedMessageId(
        bytes calldata _metadata
    ) internal pure returns (bytes32) {
        return bytes32(_metadata[MESSAGE_ID_OFFSET:MESSAGE_ID_OFFSET + 32]);
    }

    /**
     * @notice Returns the merkle proof branch of the message.
     * @dev This appears to be more gas efficient than returning a calldata
     * slice and using that.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Merkle proof branch of the message.
     */
    function proof(
        bytes calldata _metadata
    ) internal pure returns (bytes32[32] memory) {
        return
            abi.decode(
                _metadata[MERKLE_PROOF_OFFSET:MERKLE_PROOF_OFFSET +
                    MERKLE_PROOF_LENGTH],
                (bytes32[32])
            );
    }

    /**
     * @notice Returns the validator ECDSA signature at `_index`.
     * @dev Assumes signatures are sorted by validator
     * @dev Assumes `_metadata` encodes `threshold` signatures.
     * @dev Assumes `_index` is less than `threshold`
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @param _index The index of the signature to return.
     * @return The validator ECDSA signature at `_index`.
     */
    function signatureAt(
        bytes calldata _metadata,
        uint256 _index
    ) internal pure returns (bytes calldata) {
        uint256 _start = SIGNATURES_OFFSET + (_index * SIGNATURE_LENGTH);
        uint256 _end = _start + SIGNATURE_LENGTH;
        return _metadata[_start:_end];
    }

    /**
     * @notice Returns the number of signatures in the metadata.
     * @param _metadata ABI encoded Merkle Root Multisig ISM metadata.
     * @return The number of signatures in the metadata.
     */
    function signatureCount(
        bytes calldata _metadata
    ) internal pure returns (uint256) {
        uint256 signatures = _metadata.length - SIGNATURES_OFFSET;
        require(
            signatures % SIGNATURE_LENGTH == 0,
            "Invalid signatures length"
        );
        return signatures / SIGNATURE_LENGTH;
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

/**
 * Format of metadata:
 * [   0:  32] Origin merkle tree address
 * [  32:  64] Signed checkpoint root
 * [  64:  68] Signed checkpoint index
 * [  68:????] Validator signatures (length := threshold * 65)
 */
library MessageIdMultisigIsmMetadata {
    uint8 private constant ORIGIN_MERKLE_TREE_OFFSET = 0;
    uint8 private constant MERKLE_ROOT_OFFSET = 32;
    uint8 private constant MERKLE_INDEX_OFFSET = 64;
    uint8 private constant SIGNATURES_OFFSET = 68;
    uint8 private constant SIGNATURE_LENGTH = 65;

    /**
     * @notice Returns the origin merkle tree hook of the signed checkpoint as bytes32.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Origin merkle tree hook of the signed checkpoint as bytes32
     */
    function originMerkleTreeHook(
        bytes calldata _metadata
    ) internal pure returns (bytes32) {
        return
            bytes32(
                _metadata[ORIGIN_MERKLE_TREE_OFFSET:ORIGIN_MERKLE_TREE_OFFSET +
                    32]
            );
    }

    /**
     * @notice Returns the merkle root of the signed checkpoint.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Merkle root of the signed checkpoint
     */
    function root(bytes calldata _metadata) internal pure returns (bytes32) {
        return bytes32(_metadata[MERKLE_ROOT_OFFSET:MERKLE_ROOT_OFFSET + 32]);
    }

    /**
     * @notice Returns the merkle index of the signed checkpoint.
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @return Merkle index of the signed checkpoint
     */
    function index(bytes calldata _metadata) internal pure returns (uint32) {
        return
            uint32(
                bytes4(_metadata[MERKLE_INDEX_OFFSET:MERKLE_INDEX_OFFSET + 4])
            );
    }

    /**
     * @notice Returns the validator ECDSA signature at `_index`.
     * @dev Assumes signatures are sorted by validator
     * @dev Assumes `_metadata` encodes `threshold` signatures.
     * @dev Assumes `_index` is less than `threshold`
     * @param _metadata ABI encoded Multisig ISM metadata.
     * @param _index The index of the signature to return.
     * @return The validator ECDSA signature at `_index`.
     */
    function signatureAt(
        bytes calldata _metadata,
        uint256 _index
    ) internal pure returns (bytes calldata) {
        uint256 _start = SIGNATURES_OFFSET + (_index * SIGNATURE_LENGTH);
        uint256 _end = _start + SIGNATURE_LENGTH;
        return _metadata[_start:_end];
    }

    /**
     * @notice Returns the number of signatures in the metadata.
     * @param _metadata ABI encoded MessageId Multisig ISM metadata.
     * @return The number of signatures in the metadata.
     */
    function signatureCount(
        bytes calldata _metadata
    ) internal pure returns (uint256) {
        uint256 signatures = _metadata.length - SIGNATURES_OFFSET;
        require(
            signatures % SIGNATURE_LENGTH == 0,
            "Invalid signatures length"
        );
        return signatures / SIGNATURE_LENGTH;
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

// ============ Internal Imports ============
import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {AbstractMultisig} from "./AbstractMultisigIsm.sol";
import {MerkleRootMultisigIsmMetadata} from "../../isms/libs/MerkleRootMultisigIsmMetadata.sol";
import {Message} from "../../libs/Message.sol";
import {MerkleLib} from "../../libs/Merkle.sol";
import {CheckpointLib} from "../../libs/CheckpointLib.sol";

/**
 * @title `AbstractMerkleRootMultisigIsm` — multi-sig ISM with the validators-censorship resistance guarantee.
 * @notice This ISM allows using a newer signed checkpoint (say #33) to prove existence of an older message (#22) in the validators' MerkleTree.
 * This guarantees censorship resistance as validators cannot hide a message
 * by refusing to sign its checkpoint but later signing a checkpoint for a newer message.
 * If validators decide to censor a message, they are left with only one option — to not produce checkpoints at all.
 * Otherwise, the very next signed checkpoint (#33) can be used by any relayer to prove the previous message inclusion using this ISM.
 * This is censorship resistance is missing in the sibling implementation `AbstractMessageIdMultisigIsm`,
 * since it can only verify messages having the corresponding checkpoints.
 * @dev Provides the default implementation of verifying signatures over a checkpoint and the message inclusion in that checkpoint.
 * This abstract contract can be overridden for customizing the `validatorsAndThreshold()` (static or dynamic).
 * @dev May be adapted in future to support batch message verification against a single root.
 */
abstract contract AbstractMerkleRootMultisigIsm is AbstractMultisig {
    using MerkleRootMultisigIsmMetadata for bytes;
    using Message for bytes;

    // ============ Constants ============

    /**
     * @inheritdoc AbstractMultisig
     */
    function digest(
        bytes calldata _metadata,
        bytes calldata _message
    ) internal pure virtual override returns (bytes32) {
        require(
            _metadata.messageIndex() <= _metadata.signedIndex(),
            "Invalid merkle index metadata"
        );
        // We verify a merkle proof of (messageId, index) I to compute root J
        bytes32 _signedRoot = MerkleLib.branchRoot(
            _message.id(),
            _metadata.proof(),
            _metadata.messageIndex()
        );
        // We provide (messageId, index) J in metadata for digest derivation
        return
            CheckpointLib.digest(
                _message.origin(),
                _metadata.originMerkleTreeHook(),
                _signedRoot,
                _metadata.signedIndex(),
                _metadata.signedMessageId()
            );
    }

    /**
     * @inheritdoc AbstractMultisig
     */
    function signatureAt(
        bytes calldata _metadata,
        uint256 _index
    ) internal pure virtual override returns (bytes calldata) {
        return _metadata.signatureAt(_index);
    }

    /**
     * @inheritdoc AbstractMultisig
     */
    function signatureCount(
        bytes calldata _metadata
    ) public pure override returns (uint256) {
        return _metadata.signatureCount();
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

// ============ Internal Imports ============
import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {AbstractMultisig} from "./AbstractMultisigIsm.sol";
import {MessageIdMultisigIsmMetadata} from "../libs/MessageIdMultisigIsmMetadata.sol";
import {Message} from "../../libs/Message.sol";
import {CheckpointLib} from "../../libs/CheckpointLib.sol";

/**
 * @title `AbstractMessageIdMultisigIsm` — multi-sig ISM for the censorship-friendly validators.
 * @notice This ISM minimizes gas/performance overhead of the checkpoints verification by compromising on the censorship resistance.
 * For censorship resistance consider using `AbstractMerkleRootMultisigIsm`.
 * If the validators (`validatorsAndThreshold`) skip messages by not sign checkpoints for them,
 * the relayers will not be able to aggregate a quorum of signatures sufficient to deliver these messages via this ISM.
 * Integrations are free to choose the trade-off between the censorship resistance and the gas/processing overhead.
 * @dev Provides the default implementation of verifying signatures over a checkpoint related to a specific message ID.
 * This abstract contract can be customized to change the `validatorsAndThreshold()` (static or dynamic).
 */
abstract contract AbstractMessageIdMultisigIsm is AbstractMultisig {
    using Message for bytes;
    using MessageIdMultisigIsmMetadata for bytes;

    // ============ Constants ============

    /**
     * @inheritdoc AbstractMultisig
     */
    function digest(
        bytes calldata _metadata,
        bytes calldata _message
    ) internal pure override returns (bytes32) {
        return
            CheckpointLib.digest(
                _message.origin(),
                _metadata.originMerkleTreeHook(),
                _metadata.root(),
                _metadata.index(),
                _message.id()
            );
    }

    /**
     * @inheritdoc AbstractMultisig
     */
    function signatureAt(
        bytes calldata _metadata,
        uint256 _index
    ) internal pure virtual override returns (bytes calldata) {
        return _metadata.signatureAt(_index);
    }

    /**
     * @inheritdoc AbstractMultisig
     */
    function signatureCount(
        bytes calldata _metadata
    ) public pure override returns (uint256) {
        return _metadata.signatureCount();
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

/*@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@  HYPERLANE  @@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
@@@@@@@@@       @@@@@@@@*/

// ============ External Imports ============
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

// ============ Internal Imports ============
import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {IMultisigIsm} from "../../interfaces/isms/IMultisigIsm.sol";
import {Message} from "../../libs/Message.sol";
import {MerkleLib} from "../../libs/Merkle.sol";
import {PackageVersioned} from "../../PackageVersioned.sol";

/**
 * @title AbstractMultisig
 * @notice Manages per-domain m-of-n Validator sets
 * @dev See ./AbstractMerkleRootMultisigIsm.sol and ./AbstractMessageIdMultisigIsm.sol
 * for concrete implementations of `digest` and `signatureAt`.
 * @dev See ./StaticMultisigIsm.sol for concrete implementations.
 */
abstract contract AbstractMultisig is PackageVersioned {
    /**
     * @notice Returns the digest to be used for signature verification.
     * @param _metadata ABI encoded module metadata
     * @param _message Formatted Hyperlane message (see Message.sol).
     * @return digest The digest to be signed by validators
     */
    function digest(
        bytes calldata _metadata,
        bytes calldata _message
    ) internal view virtual returns (bytes32);

    /**
     * @notice Returns the signature at a given index from the metadata.
     * @param _metadata ABI encoded module metadata
     * @param _index The index of the signature to return
     * @return signature Packed encoding of signature (65 bytes)
     */
    function signatureAt(
        bytes calldata _metadata,
        uint256 _index
    ) internal pure virtual returns (bytes calldata);

    /**
     * @notice Returns the number of signatures in the metadata.
     * @param _metadata ABI encoded module metadata
     * @return count The number of signatures
     */
    function signatureCount(
        bytes calldata _metadata
    ) public pure virtual returns (uint256);
}

/**
 * @title AbstractMultisigIsm
 * @notice Manages per-domain m-of-n Validator sets of AbstractMultisig that are used to verify
 * interchain messages.
 */
abstract contract AbstractMultisigIsm is AbstractMultisig, IMultisigIsm {
    // ============ Virtual Functions ============
    // ======= OVERRIDE THESE TO IMPLEMENT =======

    /**
     * @notice Returns the set of validators responsible for verifying _message
     * and the number of signatures required
     * @dev Can change based on the content of _message
     * @dev Signatures provided to `verify` must be consistent with validator ordering
     * @param _message Hyperlane formatted interchain message
     * @return validators The array of validator addresses
     * @return threshold The number of validator signatures needed
     */
    function validatorsAndThreshold(
        bytes calldata _message
    ) public view virtual returns (address[] memory, uint8);

    // ============ Public Functions ============

    /**
     * @notice Requires that m-of-n validators verify a merkle root,
     * and verifies a merkle proof of `_message` against that root.
     * @dev Optimization relies on the caller sorting signatures in the same order as validators.
     * @dev Employs https://www.geeksforgeeks.org/two-pointers-technique/ to minimize gas usage.
     * @param _metadata ABI encoded module metadata
     * @param _message Formatted Hyperlane message (see Message.sol).
     */
    function verify(
        bytes calldata _metadata,
        bytes calldata _message
    ) public view returns (bool) {
        bytes32 _digest = digest(_metadata, _message);
        (
            address[] memory _validators,
            uint8 _threshold
        ) = validatorsAndThreshold(_message);
        require(_threshold > 0, "No MultisigISM threshold present for message");

        uint256 _validatorCount = _validators.length;
        uint256 _validatorIndex = 0;
        // Assumes that signatures are ordered by validator
        for (uint256 i = 0; i < _threshold; ++i) {
            address _signer = ECDSA.recover(_digest, signatureAt(_metadata, i));
            // Loop through remaining validators until we find a match
            while (
                _validatorIndex < _validatorCount &&
                _signer != _validators[_validatorIndex]
            ) {
                ++_validatorIndex;
            }
            // Fail if we never found a match
            require(_validatorIndex < _validatorCount, "!threshold");
            ++_validatorIndex;
        }
        return true;
    }
}

File 21 of 27 : AbstractWeightedMultisigIsm.sol
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

/*@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
     @@@@@  HYPERLANE  @@@@@@@
    @@@@@@@@@@@@@@@@@@@@@@@@@
   @@@@@@@@@       @@@@@@@@@
  @@@@@@@@@       @@@@@@@@@
 @@@@@@@@@       @@@@@@@@@
@@@@@@@@@       @@@@@@@@*/

// ============ External Imports ============
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
// ============ Internal Imports ============
import {IInterchainSecurityModule} from "../../interfaces/IInterchainSecurityModule.sol";
import {IStaticWeightedMultisigIsm} from "../../interfaces/isms/IWeightedMultisigIsm.sol";
import {Message} from "../../libs/Message.sol";

import {MerkleLib} from "../../libs/Merkle.sol";
import {AbstractMultisig} from "./AbstractMultisigIsm.sol";

/**
 * @title AbstractStaticWeightedMultisigIsm
 * @notice Manages per-domain m-of-n Validator sets with stake weights that are used to verify
 * interchain messages.
 */
abstract contract AbstractStaticWeightedMultisigIsm is
    AbstractMultisig,
    IStaticWeightedMultisigIsm
{
    // ============ Constants ============

    // total weight of all validators
    uint96 public constant TOTAL_WEIGHT = 1e10;

    /**
     * @inheritdoc IStaticWeightedMultisigIsm
     */
    function validatorsAndThresholdWeight(
        bytes calldata /* _message*/
    ) public view virtual returns (ValidatorInfo[] memory, uint96);

    /**
     * @inheritdoc IInterchainSecurityModule
     */
    function verify(
        bytes calldata _metadata,
        bytes calldata _message
    ) public view virtual returns (bool) {
        bytes32 _digest = digest(_metadata, _message);
        (
            ValidatorInfo[] memory _validators,
            uint96 _thresholdWeight
        ) = validatorsAndThresholdWeight(_message);

        require(
            _thresholdWeight > 0 && _thresholdWeight <= TOTAL_WEIGHT,
            "Invalid threshold weight"
        );

        uint256 _validatorCount = Math.min(
            _validators.length,
            signatureCount(_metadata)
        );
        uint256 _validatorIndex = 0;
        uint96 _totalWeight = 0;

        // assumes that signatures are ordered by validator
        for (
            uint256 signatureIndex = 0;
            _totalWeight < _thresholdWeight && signatureIndex < _validatorCount;
            ++signatureIndex
        ) {
            address _signer = ECDSA.recover(
                _digest,
                signatureAt(_metadata, signatureIndex)
            );
            // loop through remaining validators until we find a match
            while (
                _validatorIndex < _validatorCount &&
                _signer != _validators[_validatorIndex].signingAddress
            ) {
                ++_validatorIndex;
            }
            // fail if we never found a match
            require(_validatorIndex < _validatorCount, "Invalid signer");

            // add the weight of the current validator
            _totalWeight += _validators[_validatorIndex].weight;
            ++_validatorIndex;
        }
        require(
            _totalWeight >= _thresholdWeight,
            "Insufficient validator weight"
        );
        return true;
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {TypeCasts} from "./TypeCasts.sol";

struct Checkpoint {
    uint32 origin;
    bytes32 merkleTree;
    bytes32 root;
    uint32 index;
    bytes32 messageId;
}

library CheckpointLib {
    using TypeCasts for bytes32;

    /**
     * @notice Returns the digest validators are expected to sign when signing checkpoints.
     * @param _origin The origin domain of the checkpoint.
     * @param _merkleTreeHook The address of the origin merkle tree hook as bytes32.
     * @param _checkpointRoot The root of the checkpoint.
     * @param _checkpointIndex The index of the checkpoint.
     * @param _messageId The message ID of the checkpoint.
     * @dev Message ID must match leaf content of checkpoint root at index.
     * @return The digest of the checkpoint.
     */
    function digest(
        uint32 _origin,
        bytes32 _merkleTreeHook,
        bytes32 _checkpointRoot,
        uint32 _checkpointIndex,
        bytes32 _messageId
    ) internal pure returns (bytes32) {
        bytes32 _domainHash = domainHash(_origin, _merkleTreeHook);
        return
            ECDSA.toEthSignedMessageHash(
                keccak256(
                    abi.encodePacked(
                        _domainHash,
                        _checkpointRoot,
                        _checkpointIndex,
                        _messageId
                    )
                )
            );
    }

    /**
     * @notice Returns the digest validators are expected to sign when signing checkpoints.
     * @param checkpoint The checkpoint (struct) to hash.
     * @return The digest of the checkpoint.
     */
    function digest(
        Checkpoint memory checkpoint
    ) internal pure returns (bytes32) {
        return
            digest(
                checkpoint.origin,
                checkpoint.merkleTree,
                checkpoint.root,
                checkpoint.index,
                checkpoint.messageId
            );
    }

    function merkleTreeAddress(
        Checkpoint calldata checkpoint
    ) internal pure returns (address) {
        return checkpoint.merkleTree.bytes32ToAddress();
    }

    /**
     * @notice Returns the domain hash that validators are expected to use
     * when signing checkpoints.
     * @param _origin The origin domain of the checkpoint.
     * @param _merkleTreeHook The address of the origin merkle tree as bytes32.
     * @return The domain hash.
     */
    function domainHash(
        uint32 _origin,
        bytes32 _merkleTreeHook
    ) internal pure returns (bytes32) {
        // Including the origin merkle tree address in the signature allows the slashing
        // protocol to enroll multiple trees. Otherwise, a valid signature for
        // tree A would be indistinguishable from a fraudulent signature for tree B.
        // The slashing protocol should slash if validators sign attestations for
        // anything other than a whitelisted tree.
        return
            keccak256(abi.encodePacked(_origin, _merkleTreeHook, "HYPERLANE"));
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

// work based on eth2 deposit contract, which is used under CC0-1.0

uint256 constant TREE_DEPTH = 32;
uint256 constant MAX_LEAVES = 2 ** TREE_DEPTH - 1;

/**
 * @title MerkleLib
 * @author Celo Labs Inc.
 * @notice An incremental merkle tree modeled on the eth2 deposit contract.
 **/
library MerkleLib {
    /**
     * @notice Struct representing incremental merkle tree. Contains current
     * branch and the number of inserted leaves in the tree.
     **/
    struct Tree {
        bytes32[TREE_DEPTH] branch;
        uint256 count;
    }

    /**
     * @notice Inserts `_node` into merkle tree
     * @dev Reverts if tree is full
     * @param _node Element to insert into tree
     **/
    function insert(Tree storage _tree, bytes32 _node) internal {
        require(_tree.count < MAX_LEAVES, "merkle tree full");

        _tree.count += 1;
        uint256 size = _tree.count;
        for (uint256 i = 0; i < TREE_DEPTH; i++) {
            if ((size & 1) == 1) {
                _tree.branch[i] = _node;
                return;
            }
            _node = keccak256(abi.encodePacked(_tree.branch[i], _node));
            size /= 2;
        }
        // As the loop should always end prematurely with the `return` statement,
        // this code should be unreachable. We assert `false` just to be safe.
        assert(false);
    }

    /**
     * @notice Calculates and returns`_tree`'s current root given array of zero
     * hashes
     * @param _zeroes Array of zero hashes
     * @return _current Calculated root of `_tree`
     **/
    function rootWithCtx(
        Tree storage _tree,
        bytes32[TREE_DEPTH] memory _zeroes
    ) internal view returns (bytes32 _current) {
        uint256 _index = _tree.count;

        for (uint256 i = 0; i < TREE_DEPTH; i++) {
            uint256 _ithBit = (_index >> i) & 0x01;
            bytes32 _next = _tree.branch[i];
            if (_ithBit == 1) {
                _current = keccak256(abi.encodePacked(_next, _current));
            } else {
                _current = keccak256(abi.encodePacked(_current, _zeroes[i]));
            }
        }
    }

    /// @notice Calculates and returns`_tree`'s current root
    function root(Tree storage _tree) internal view returns (bytes32) {
        return rootWithCtx(_tree, zeroHashes());
    }

    /// @notice Returns array of TREE_DEPTH zero hashes
    /// @return _zeroes Array of TREE_DEPTH zero hashes
    function zeroHashes()
        internal
        pure
        returns (bytes32[TREE_DEPTH] memory _zeroes)
    {
        _zeroes[0] = Z_0;
        _zeroes[1] = Z_1;
        _zeroes[2] = Z_2;
        _zeroes[3] = Z_3;
        _zeroes[4] = Z_4;
        _zeroes[5] = Z_5;
        _zeroes[6] = Z_6;
        _zeroes[7] = Z_7;
        _zeroes[8] = Z_8;
        _zeroes[9] = Z_9;
        _zeroes[10] = Z_10;
        _zeroes[11] = Z_11;
        _zeroes[12] = Z_12;
        _zeroes[13] = Z_13;
        _zeroes[14] = Z_14;
        _zeroes[15] = Z_15;
        _zeroes[16] = Z_16;
        _zeroes[17] = Z_17;
        _zeroes[18] = Z_18;
        _zeroes[19] = Z_19;
        _zeroes[20] = Z_20;
        _zeroes[21] = Z_21;
        _zeroes[22] = Z_22;
        _zeroes[23] = Z_23;
        _zeroes[24] = Z_24;
        _zeroes[25] = Z_25;
        _zeroes[26] = Z_26;
        _zeroes[27] = Z_27;
        _zeroes[28] = Z_28;
        _zeroes[29] = Z_29;
        _zeroes[30] = Z_30;
        _zeroes[31] = Z_31;
    }

    /**
     * @notice Calculates and returns the merkle root for the given leaf
     * `_item`, a merkle branch, and the index of `_item` in the tree.
     * @param _item Merkle leaf
     * @param _branch Merkle proof
     * @param _index Index of `_item` in tree
     * @return _current Calculated merkle root
     **/
    function branchRoot(
        bytes32 _item,
        bytes32[TREE_DEPTH] memory _branch, // cheaper than calldata indexing
        uint256 _index
    ) internal pure returns (bytes32 _current) {
        _current = _item;

        for (uint256 i = 0; i < TREE_DEPTH; i++) {
            uint256 _ithBit = (_index >> i) & 0x01;
            // cheaper than calldata indexing _branch[i*32:(i+1)*32];
            bytes32 _next = _branch[i];
            if (_ithBit == 1) {
                _current = keccak256(abi.encodePacked(_next, _current));
            } else {
                _current = keccak256(abi.encodePacked(_current, _next));
            }
        }
    }

    /**
     * @notice Calculates and returns the merkle root as if the index is
     * the topmost leaf in the tree.
     * @param _item Merkle leaf
     * @param _branch Merkle proof
     * @param _index Index of `_item` in tree
     * @dev Replaces siblings greater than the index (right subtrees) with zeroes.
     * @return _current Calculated merkle root
     **/
    function reconstructRoot(
        bytes32 _item,
        bytes32[TREE_DEPTH] memory _branch, // cheaper than calldata indexing
        uint256 _index
    ) internal pure returns (bytes32 _current) {
        _current = _item;

        bytes32[TREE_DEPTH] memory _zeroes = zeroHashes();

        for (uint256 i = 0; i < TREE_DEPTH; i++) {
            uint256 _ithBit = (_index >> i) & 0x01;
            // cheaper than calldata indexing _branch[i*32:(i+1)*32];
            if (_ithBit == 1) {
                _current = keccak256(abi.encodePacked(_branch[i], _current));
            } else {
                // remove right subtree from proof
                _current = keccak256(abi.encodePacked(_current, _zeroes[i]));
            }
        }
    }

    // keccak256 zero hashes
    bytes32 internal constant Z_0 =
        hex"0000000000000000000000000000000000000000000000000000000000000000";
    bytes32 internal constant Z_1 =
        hex"ad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5";
    bytes32 internal constant Z_2 =
        hex"b4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30";
    bytes32 internal constant Z_3 =
        hex"21ddb9a356815c3fac1026b6dec5df3124afbadb485c9ba5a3e3398a04b7ba85";
    bytes32 internal constant Z_4 =
        hex"e58769b32a1beaf1ea27375a44095a0d1fb664ce2dd358e7fcbfb78c26a19344";
    bytes32 internal constant Z_5 =
        hex"0eb01ebfc9ed27500cd4dfc979272d1f0913cc9f66540d7e8005811109e1cf2d";
    bytes32 internal constant Z_6 =
        hex"887c22bd8750d34016ac3c66b5ff102dacdd73f6b014e710b51e8022af9a1968";
    bytes32 internal constant Z_7 =
        hex"ffd70157e48063fc33c97a050f7f640233bf646cc98d9524c6b92bcf3ab56f83";
    bytes32 internal constant Z_8 =
        hex"9867cc5f7f196b93bae1e27e6320742445d290f2263827498b54fec539f756af";
    bytes32 internal constant Z_9 =
        hex"cefad4e508c098b9a7e1d8feb19955fb02ba9675585078710969d3440f5054e0";
    bytes32 internal constant Z_10 =
        hex"f9dc3e7fe016e050eff260334f18a5d4fe391d82092319f5964f2e2eb7c1c3a5";
    bytes32 internal constant Z_11 =
        hex"f8b13a49e282f609c317a833fb8d976d11517c571d1221a265d25af778ecf892";
    bytes32 internal constant Z_12 =
        hex"3490c6ceeb450aecdc82e28293031d10c7d73bf85e57bf041a97360aa2c5d99c";
    bytes32 internal constant Z_13 =
        hex"c1df82d9c4b87413eae2ef048f94b4d3554cea73d92b0f7af96e0271c691e2bb";
    bytes32 internal constant Z_14 =
        hex"5c67add7c6caf302256adedf7ab114da0acfe870d449a3a489f781d659e8becc";
    bytes32 internal constant Z_15 =
        hex"da7bce9f4e8618b6bd2f4132ce798cdc7a60e7e1460a7299e3c6342a579626d2";
    bytes32 internal constant Z_16 =
        hex"2733e50f526ec2fa19a22b31e8ed50f23cd1fdf94c9154ed3a7609a2f1ff981f";
    bytes32 internal constant Z_17 =
        hex"e1d3b5c807b281e4683cc6d6315cf95b9ade8641defcb32372f1c126e398ef7a";
    bytes32 internal constant Z_18 =
        hex"5a2dce0a8a7f68bb74560f8f71837c2c2ebbcbf7fffb42ae1896f13f7c7479a0";
    bytes32 internal constant Z_19 =
        hex"b46a28b6f55540f89444f63de0378e3d121be09e06cc9ded1c20e65876d36aa0";
    bytes32 internal constant Z_20 =
        hex"c65e9645644786b620e2dd2ad648ddfcbf4a7e5b1a3a4ecfe7f64667a3f0b7e2";
    bytes32 internal constant Z_21 =
        hex"f4418588ed35a2458cffeb39b93d26f18d2ab13bdce6aee58e7b99359ec2dfd9";
    bytes32 internal constant Z_22 =
        hex"5a9c16dc00d6ef18b7933a6f8dc65ccb55667138776f7dea101070dc8796e377";
    bytes32 internal constant Z_23 =
        hex"4df84f40ae0c8229d0d6069e5c8f39a7c299677a09d367fc7b05e3bc380ee652";
    bytes32 internal constant Z_24 =
        hex"cdc72595f74c7b1043d0e1ffbab734648c838dfb0527d971b602bc216c9619ef";
    bytes32 internal constant Z_25 =
        hex"0abf5ac974a1ed57f4050aa510dd9c74f508277b39d7973bb2dfccc5eeb0618d";
    bytes32 internal constant Z_26 =
        hex"b8cd74046ff337f0a7bf2c8e03e10f642c1886798d71806ab1e888d9e5ee87d0";
    bytes32 internal constant Z_27 =
        hex"838c5655cb21c6cb83313b5a631175dff4963772cce9108188b34ac87c81c41e";
    bytes32 internal constant Z_28 =
        hex"662ee4dd2dd7b2bc707961b1e646c4047669dcb6584f0d8d770daf5d7e7deb2e";
    bytes32 internal constant Z_29 =
        hex"388ab20e2573d171a88108e79d820e98f26c0b84aa8b2f4aa4968dbb818ea322";
    bytes32 internal constant Z_30 =
        hex"93237c50ba75ee485f4c22adf2f741400bdf8d6a9cc7df7ecae576221665d735";
    bytes32 internal constant Z_31 =
        hex"8448818bb4ae4562849e949e17ac16e0be16688e156b5cf15e098c627c0056a9";
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;

import {TypeCasts} from "./TypeCasts.sol";

/**
 * @title Hyperlane Message Library
 * @notice Library for formatted messages used by Mailbox
 **/
library Message {
    using TypeCasts for bytes32;

    uint256 private constant VERSION_OFFSET = 0;
    uint256 private constant NONCE_OFFSET = 1;
    uint256 private constant ORIGIN_OFFSET = 5;
    uint256 private constant SENDER_OFFSET = 9;
    uint256 private constant DESTINATION_OFFSET = 41;
    uint256 private constant RECIPIENT_OFFSET = 45;
    uint256 private constant BODY_OFFSET = 77;

    /**
     * @notice Returns formatted (packed) Hyperlane message with provided fields
     * @dev This function should only be used in memory message construction.
     * @param _version The version of the origin and destination Mailboxes
     * @param _nonce A nonce to uniquely identify the message on its origin chain
     * @param _originDomain Domain of origin chain
     * @param _sender Address of sender as bytes32
     * @param _destinationDomain Domain of destination chain
     * @param _recipient Address of recipient on destination chain as bytes32
     * @param _messageBody Raw bytes of message body
     * @return Formatted message
     */
    function formatMessage(
        uint8 _version,
        uint32 _nonce,
        uint32 _originDomain,
        bytes32 _sender,
        uint32 _destinationDomain,
        bytes32 _recipient,
        bytes calldata _messageBody
    ) internal pure returns (bytes memory) {
        return
            abi.encodePacked(
                _version,
                _nonce,
                _originDomain,
                _sender,
                _destinationDomain,
                _recipient,
                _messageBody
            );
    }

    /**
     * @notice Returns the message ID.
     * @param _message ABI encoded Hyperlane message.
     * @return ID of `_message`
     */
    function id(bytes memory _message) internal pure returns (bytes32) {
        return keccak256(_message);
    }

    /**
     * @notice Returns the message version.
     * @param _message ABI encoded Hyperlane message.
     * @return Version of `_message`
     */
    function version(bytes calldata _message) internal pure returns (uint8) {
        return uint8(bytes1(_message[VERSION_OFFSET:NONCE_OFFSET]));
    }

    /**
     * @notice Returns the message nonce.
     * @param _message ABI encoded Hyperlane message.
     * @return Nonce of `_message`
     */
    function nonce(bytes calldata _message) internal pure returns (uint32) {
        return uint32(bytes4(_message[NONCE_OFFSET:ORIGIN_OFFSET]));
    }

    /**
     * @notice Returns the message origin domain.
     * @param _message ABI encoded Hyperlane message.
     * @return Origin domain of `_message`
     */
    function origin(bytes calldata _message) internal pure returns (uint32) {
        return uint32(bytes4(_message[ORIGIN_OFFSET:SENDER_OFFSET]));
    }

    /**
     * @notice Returns the message sender as bytes32.
     * @param _message ABI encoded Hyperlane message.
     * @return Sender of `_message` as bytes32
     */
    function sender(bytes calldata _message) internal pure returns (bytes32) {
        return bytes32(_message[SENDER_OFFSET:DESTINATION_OFFSET]);
    }

    /**
     * @notice Returns the message sender as address.
     * @param _message ABI encoded Hyperlane message.
     * @return Sender of `_message` as address
     */
    function senderAddress(
        bytes calldata _message
    ) internal pure returns (address) {
        return sender(_message).bytes32ToAddress();
    }

    /**
     * @notice Returns the message destination domain.
     * @param _message ABI encoded Hyperlane message.
     * @return Destination domain of `_message`
     */
    function destination(
        bytes calldata _message
    ) internal pure returns (uint32) {
        return uint32(bytes4(_message[DESTINATION_OFFSET:RECIPIENT_OFFSET]));
    }

    /**
     * @notice Returns the message recipient as bytes32.
     * @param _message ABI encoded Hyperlane message.
     * @return Recipient of `_message` as bytes32
     */
    function recipient(
        bytes calldata _message
    ) internal pure returns (bytes32) {
        return bytes32(_message[RECIPIENT_OFFSET:BODY_OFFSET]);
    }

    /**
     * @notice Returns the message recipient as address.
     * @param _message ABI encoded Hyperlane message.
     * @return Recipient of `_message` as address
     */
    function recipientAddress(
        bytes calldata _message
    ) internal pure returns (address) {
        return recipient(_message).bytes32ToAddress();
    }

    /**
     * @notice Returns the message body.
     * @param _message ABI encoded Hyperlane message.
     * @return Body of `_message`
     */
    function body(
        bytes calldata _message
    ) internal pure returns (bytes calldata) {
        return bytes(_message[BODY_OFFSET:]);
    }
}

// SPDX-License-Identifier: CC0-1.0
pragma solidity >=0.7.6;

/// @dev Adapted from https://eips.ethereum.org/EIPS/eip-3448
library MetaProxy {
    bytes32 private constant PREFIX =
        hex"600b380380600b3d393df3363d3d373d3d3d3d60368038038091363936013d73";
    bytes13 private constant SUFFIX = hex"5af43d3d93803e603457fd5bf3";

    function bytecode(
        address _implementation,
        bytes memory _metadata
    ) internal pure returns (bytes memory) {
        return
            abi.encodePacked(
                PREFIX,
                bytes20(_implementation),
                SUFFIX,
                _metadata,
                _metadata.length
            );
    }

    function metadata() internal pure returns (bytes memory) {
        bytes memory data;
        assembly {
            let posOfMetadataSize := sub(calldatasize(), 32)
            let size := calldataload(posOfMetadataSize)
            let dataPtr := sub(posOfMetadataSize, size)
            data := mload(64)
            // increment free memory pointer by metadata size + 32 bytes (length)
            mstore(64, add(data, add(size, 32)))
            mstore(data, size)
            let memPtr := add(data, 32)
            calldatacopy(memPtr, dataPtr, size)
        }
        return data;
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.8.0;
// ============ External Imports ============

import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {Create2} from "@openzeppelin/contracts/utils/Create2.sol";
import {IStaticWeightedMultisigIsm} from "../interfaces/isms/IWeightedMultisigIsm.sol";

// ============ Internal Imports ============
import {MetaProxy} from "./MetaProxy.sol";
import {PackageVersioned} from "../PackageVersioned.sol";

abstract contract StaticWeightedValidatorSetFactory is PackageVersioned {
    // ============ Immutables ============
    address public immutable implementation;

    // ============ Constructor ============

    constructor() {
        implementation = _deployImplementation();
    }

    function _deployImplementation() internal virtual returns (address);

    /**
     * @notice Deploys a StaticWeightedValidatorSet contract address for the given
     * values
     * @dev Consider sorting addresses to ensure contract reuse
     * @param _validators An array of addresses
     * @param _thresholdWeight The threshold weight value to use
     * @return set The contract address representing this StaticWeightedValidatorSet
     */
    function deploy(
        IStaticWeightedMultisigIsm.ValidatorInfo[] calldata _validators,
        uint96 _thresholdWeight
    ) public returns (address) {
        (bytes32 _salt, bytes memory _bytecode) = _saltAndBytecode(
            _validators,
            _thresholdWeight
        );
        address _set = _getAddress(_salt, _bytecode);
        if (!Address.isContract(_set)) {
            _set = Create2.deploy(0, _salt, _bytecode);
        }
        return _set;
    }

    /**
     * @notice Returns the StaticWeightedValidatorSet contract address for the given
     * values
     * @dev Consider sorting addresses to ensure contract reuse
     * @param _validators An array of addresses
     * @param _thresholdWeight The threshold weight value to use
     * @return set The contract address representing this StaticWeightedValidatorSet
     */
    function getAddress(
        IStaticWeightedMultisigIsm.ValidatorInfo[] calldata _validators,
        uint96 _thresholdWeight
    ) external view returns (address) {
        (bytes32 _salt, bytes memory _bytecode) = _saltAndBytecode(
            _validators,
            _thresholdWeight
        );
        return _getAddress(_salt, _bytecode);
    }

    /**
     * @notice Returns the StaticWeightedValidatorSet contract address for the given
     * values
     * @param _salt The salt used in Create2
     * @param _bytecode The metaproxy bytecode used in Create2
     * @return set The contract address representing this StaticWeightedValidatorSet
     */
    function _getAddress(
        bytes32 _salt,
        bytes memory _bytecode
    ) internal view returns (address) {
        bytes32 _bytecodeHash = keccak256(_bytecode);
        return Create2.computeAddress(_salt, _bytecodeHash);
    }

    /**
     * @notice Returns the create2 salt and bytecode for the given values
     * @param _validators An array of addresses
     * @param _thresholdWeight The threshold weight value to use
     * @return _salt The salt used in Create2
     * @return _bytecode The metaproxy bytecode used in Create2
     */
    function _saltAndBytecode(
        IStaticWeightedMultisigIsm.ValidatorInfo[] calldata _validators,
        uint96 _thresholdWeight
    ) internal view returns (bytes32, bytes memory) {
        bytes memory _metadata = abi.encode(_validators, _thresholdWeight);
        bytes memory _bytecode = MetaProxy.bytecode(implementation, _metadata);
        bytes32 _salt = keccak256(_metadata);
        return (_salt, _bytecode);
    }
}

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.11;

library TypeCasts {
    // alignment preserving cast
    function addressToBytes32(address _addr) internal pure returns (bytes32) {
        return bytes32(uint256(uint160(_addr)));
    }

    // alignment preserving cast
    function bytes32ToAddress(bytes32 _buf) internal pure returns (address) {
        require(
            uint256(_buf) <= uint256(type(uint160).max),
            "TypeCasts: bytes32ToAddress overflow"
        );
        return address(uint160(uint256(_buf)));
    }
}

Settings
{
  "evmVersion": "paris",
  "libraries": {},
  "optimizer": {
    "enabled": true,
    "runs": 999999
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"name":"PACKAGE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"signingAddress","type":"address"},{"internalType":"uint96","name":"weight","type":"uint96"}],"internalType":"struct IStaticWeightedMultisigIsm.ValidatorInfo[]","name":"_validators","type":"tuple[]"},{"internalType":"uint96","name":"_thresholdWeight","type":"uint96"}],"name":"deploy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"signingAddress","type":"address"},{"internalType":"uint96","name":"weight","type":"uint96"}],"internalType":"struct IStaticWeightedMultisigIsm.ValidatorInfo[]","name":"_validators","type":"tuple[]"},{"internalType":"uint96","name":"_thresholdWeight","type":"uint96"}],"name":"getAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60a060405234801561001057600080fd5b5061001961002a565b6001600160a01b0316608052610067565b60006040516100389061005a565b604051809103906000f080158015610054573d6000803e3d6000fd5b50905090565b61139d8061071783390190565b60805161068f61008860003960008181605601526101c3015261068f6000f3fe608060405234801561001057600080fd5b506004361061004c5760003560e01c80635c60da1b146100515780636a373128146100a257806393c44847146100b5578063f0118ba6146100fe575b600080fd5b6100787f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b6100786100b0366004610449565b610111565b6100f16040518060400160405280600681526020017f372e312e3130000000000000000000000000000000000000000000000000000081525081565b60405161009991906104f1565b61007861010c366004610449565b61013b565b6000806000610121868686610190565b9150915061012f8282610200565b925050505b9392505050565b600080600061014b868686610190565b91509150600061015b8383610200565b905073ffffffffffffffffffffffffffffffffffffffff81163b61012f576101856000848461021c565b979650505050505050565b6000606060008585856040516020016101ab93929190610542565b604051602081830303815290604052905060006101e87f000000000000000000000000000000000000000000000000000000000000000083610380565b82516020909301929092209791965090945050505050565b8051602082012060009061021484826103f6565b949350505050565b60008347101561028d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f437265617465323a20696e73756666696369656e742062616c616e636500000060448201526064015b60405180910390fd5b81516000036102f8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f437265617465323a2062797465636f6465206c656e677468206973207a65726f6044820152606401610284565b8282516020840186f5905073ffffffffffffffffffffffffffffffffffffffff8116610134576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f437265617465323a204661696c6564206f6e206465706c6f79000000000000006044820152606401610284565b60607f600b380380600b3d393df3363d3d373d3d3d3d60368038038091363936013d738360601b7f5af43d3d93803e603457fd5bf3000000000000000000000000000000000000008485516040516020016103df9594939291906105da565b604051602081830303815290604052905092915050565b60006101348383306000604051836040820152846020820152828152600b8101905060ff815360559020949350505050565b80356bffffffffffffffffffffffff8116811461044457600080fd5b919050565b60008060006040848603121561045e57600080fd5b833567ffffffffffffffff8082111561047657600080fd5b818601915086601f83011261048a57600080fd5b81358181111561049957600080fd5b8760208260061b85010111156104ae57600080fd5b6020928301955093506104c49186019050610428565b90509250925092565b60005b838110156104e85781810151838201526020016104d0565b50506000910152565b60208152600082518060208401526105108160408501602087016104cd565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b6040808252818101849052600090856060840183805b888110156105b657833573ffffffffffffffffffffffffffffffffffffffff8116808214610584578384fd5b84525060206bffffffffffffffffffffffff6105a1868301610428565b16908401529284019291840191600101610558565b50508093505050506bffffffffffffffffffffffff83166020830152949350505050565b8581527fffffffffffffffffffffffffffffffffffffffff000000000000000000000000851660208201527fffffffffffffffffffffffffff0000000000000000000000000000000000000084166034820152600083516106428160418501602088016104cd565b60419201918201929092526061019594505050505056fea2646970667358221220f8b589c09372efb15e6255feda8c22c01ffbfd45fdf9878c5e16767c247d310c64736f6c63430008160033608060405234801561001057600080fd5b5061137d806100206000396000f3fe608060405234801561001057600080fd5b50600436106100725760003560e01c8063ec29dbde11610050578063ec29dbde14610100578063ed2a2f9d14610121578063f7e83aee1461014a57600080fd5b806322a8d6fc146100775780636465e69f1461009d57806393c44847146100b7575b600080fd5b61008a610085366004610cec565b61016d565b6040519081526020015b60405180910390f35b6100a5600981565b60405160ff9091168152602001610094565b6100f36040518060400160405280600681526020017f372e312e3130000000000000000000000000000000000000000000000000000081525081565b6040516100949190610d2e565b61011361010e366004610cec565b610182565b604051610094929190610d9b565b61012d6402540be40081565b6040516bffffffffffffffffffffffff9091168152602001610094565b61015d610158366004610e26565b6101ad565b6040519015158152602001610094565b600061017983836104bc565b90505b92915050565b6060600061018e610552565b8060200190518101906101a19190610f89565b915091505b9250929050565b6000806101bc86868686610582565b90506000806101cb8686610182565b915091506000816bffffffffffffffffffffffff1611801561020057506402540be4006bffffffffffffffffffffffff821611155b61026b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f496e76616c6964207468726573686f6c6420776569676874000000000000000060448201526064015b60405180910390fd5b6000610281835161027c8b8b61016d565b61078a565b905060008060005b846bffffffffffffffffffffffff16826bffffffffffffffffffffffff161080156102b357508381105b15610424576000610303886102c98f8f866107a0565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506107ba92505050565b90505b848410801561035e575086848151811061032257610322611090565b60200260200101516000015173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614155b156103735761036c846110ee565b9350610306565b8484106103dc576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600e60248201527f496e76616c6964207369676e65720000000000000000000000000000000000006044820152606401610262565b8684815181106103ee576103ee611090565b602002602001015160200151836104059190611126565b9250610410846110ee565b9350508061041d906110ee565b9050610289565b50836bffffffffffffffffffffffff16816bffffffffffffffffffffffff1610156104ab576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f496e73756666696369656e742076616c696461746f72207765696768740000006044820152606401610262565b5060019a9950505050505050505050565b6000806104cb61044884611152565b90506104d8604182611194565b1561053f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f496e76616c6964207369676e617475726573206c656e677468000000000000006044820152606401610262565b61054a6041826111a8565b949350505050565b60608060203603803580820391506040519250602081018301604052808352602083018183823750919392505050565b600061058e85856107de565b63ffffffff1661059e8686610814565b63ffffffff16111561060c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f496e76616c6964206d65726b6c6520696e646578206d657461646174610000006044820152606401610262565b600061066f61065085858080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061083592505050565b61065a8888610840565b6106648989610814565b63ffffffff16610876565b905061078061067e8585610914565b6106888888610924565b836106938a8a6107de565b61069d8b8b61094d565b604080517fffffffff0000000000000000000000000000000000000000000000000000000060e097881b811660208084019190915260248301979097527f48595045524c414e45000000000000000000000000000000000000000000000060448301528251808303602d018152604d83018452805190880120606d830152608d8201959095529290951b90921660ad82015260b1808201929092528351808203909201825260d10190925281519101207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9695505050505050565b60008183106107995781610179565b5090919050565b3660006107ae85858561095e565b91509150935093915050565b60008060006107c985856109a4565b915091506107d6816109e6565b509392505050565b600082610444836107f08260046111bc565b61ffff1692610801939291906111d7565b61080a91611201565b60e01c9392505050565b600082602083610825826004611249565b60ff1692610801939291906111d7565b805160209091012090565b610848610c8b565b82604483610858610400836111bc565b61ffff1692610869939291906111d7565b8101906101799190611262565b8260005b60208110156107d657600183821c16600085836020811061089d5761089d611090565b60200201519050816001036108dd57604080516020810183905290810185905260600160405160208183030381529060405280519060200120935061090a565b60408051602081018690529081018290526060016040516020818303038152906040528051906020012093505b505060010161087a565b60006108016009600584866111d7565b6000828183610934826020611249565b60ff1692610944939291906111d7565b610179916112e1565b600082602483610934826020611249565b3660008061096d60418561131d565b61097990610448611334565b90506000610988604183611334565b90506109968183888a6111d7565b935093505050935093915050565b60008082516041036109da5760208301516040840151606085015160001a6109ce87828585610b9c565b945094505050506101a6565b506000905060026101a6565b60008160048111156109fa576109fa610e92565b03610a025750565b6001816004811115610a1657610a16610e92565b03610a7d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152606401610262565b6002816004811115610a9157610a91610e92565b03610af8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610262565b6003816004811115610b0c57610b0c610e92565b03610b99576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c60448201527f75650000000000000000000000000000000000000000000000000000000000006064820152608401610262565b50565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610bd35750600090506003610c82565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610c27573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610c7b57600060019250925050610c82565b9150600090505b94509492505050565b6040518061040001604052806020906020820280368337509192915050565b60008083601f840112610cbc57600080fd5b50813567ffffffffffffffff811115610cd457600080fd5b6020830191508360208285010111156101a657600080fd5b60008060208385031215610cff57600080fd5b823567ffffffffffffffff811115610d1657600080fd5b610d2285828601610caa565b90969095509350505050565b60006020808352835180602085015260005b81811015610d5c57858101830151858201604001528201610d40565b5060006040828601015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8301168501019250505092915050565b60408082528351828201819052600091906020906060850190828801855b82811015610e02578151805173ffffffffffffffffffffffffffffffffffffffff1685528501516bffffffffffffffffffffffff16858501529285019290840190600101610db9565b5050508093505050506bffffffffffffffffffffffff831660208301529392505050565b60008060008060408587031215610e3c57600080fd5b843567ffffffffffffffff80821115610e5457600080fd5b610e6088838901610caa565b90965094506020870135915080821115610e7957600080fd5b50610e8687828801610caa565b95989497509550505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6040805190810167ffffffffffffffff81118282101715610f1357610f13610ec1565b60405290565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715610f6057610f60610ec1565b604052919050565b80516bffffffffffffffffffffffff81168114610f8457600080fd5b919050565b6000806040808486031215610f9d57600080fd5b835167ffffffffffffffff80821115610fb557600080fd5b818601915086601f830112610fc957600080fd5b8151602082821115610fdd57610fdd610ec1565b610feb818360051b01610f19565b828152818101935060069290921b84018101918983111561100b57600080fd5b938101935b828510156110755785858b0312156110285760008081fd5b611030610ef0565b855173ffffffffffffffffffffffffffffffffffffffff811681146110555760008081fd5b8152611062868401610f68565b8184015284529385019392810192611010565b9650611082888201610f68565b955050505050509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361111f5761111f6110bf565b5060010190565b6bffffffffffffffffffffffff81811683821601908082111561114b5761114b6110bf565b5092915050565b8181038181111561017c5761017c6110bf565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b6000826111a3576111a3611165565b500690565b6000826111b7576111b7611165565b500490565b61ffff81811683821601908082111561114b5761114b6110bf565b600080858511156111e757600080fd5b838611156111f457600080fd5b5050820193919092039150565b7fffffffff0000000000000000000000000000000000000000000000000000000081358181169160048510156112415780818660040360031b1b83161692505b505092915050565b60ff818116838216019081111561017c5761017c6110bf565b600061040080838503121561127657600080fd5b83601f84011261128557600080fd5b60405181810181811067ffffffffffffffff821117156112a7576112a7610ec1565b6040529083019080858311156112bc57600080fd5b845b838110156112d65780358252602091820191016112be565b509095945050505050565b8035602083101561017c577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff602084900360031b1b1692915050565b808202811582820484141761017c5761017c6110bf565b8082018082111561017c5761017c6110bf56fea26469706673582212203ea3fbafc54230bedf30a9016e4a3d33f41732bfca1c13e2967f89d84ace91f964736f6c63430008160033

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061004c5760003560e01c80635c60da1b146100515780636a373128146100a257806393c44847146100b5578063f0118ba6146100fe575b600080fd5b6100787f0000000000000000000000003b9f24fd2ecfed0d3a88fa7f0e4e5747671981d781565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b6100786100b0366004610449565b610111565b6100f16040518060400160405280600681526020017f372e312e3130000000000000000000000000000000000000000000000000000081525081565b60405161009991906104f1565b61007861010c366004610449565b61013b565b6000806000610121868686610190565b9150915061012f8282610200565b925050505b9392505050565b600080600061014b868686610190565b91509150600061015b8383610200565b905073ffffffffffffffffffffffffffffffffffffffff81163b61012f576101856000848461021c565b979650505050505050565b6000606060008585856040516020016101ab93929190610542565b604051602081830303815290604052905060006101e87f0000000000000000000000003b9f24fd2ecfed0d3a88fa7f0e4e5747671981d783610380565b82516020909301929092209791965090945050505050565b8051602082012060009061021484826103f6565b949350505050565b60008347101561028d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f437265617465323a20696e73756666696369656e742062616c616e636500000060448201526064015b60405180910390fd5b81516000036102f8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f437265617465323a2062797465636f6465206c656e677468206973207a65726f6044820152606401610284565b8282516020840186f5905073ffffffffffffffffffffffffffffffffffffffff8116610134576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601960248201527f437265617465323a204661696c6564206f6e206465706c6f79000000000000006044820152606401610284565b60607f600b380380600b3d393df3363d3d373d3d3d3d60368038038091363936013d738360601b7f5af43d3d93803e603457fd5bf3000000000000000000000000000000000000008485516040516020016103df9594939291906105da565b604051602081830303815290604052905092915050565b60006101348383306000604051836040820152846020820152828152600b8101905060ff815360559020949350505050565b80356bffffffffffffffffffffffff8116811461044457600080fd5b919050565b60008060006040848603121561045e57600080fd5b833567ffffffffffffffff8082111561047657600080fd5b818601915086601f83011261048a57600080fd5b81358181111561049957600080fd5b8760208260061b85010111156104ae57600080fd5b6020928301955093506104c49186019050610428565b90509250925092565b60005b838110156104e85781810151838201526020016104d0565b50506000910152565b60208152600082518060208401526105108160408501602087016104cd565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b6040808252818101849052600090856060840183805b888110156105b657833573ffffffffffffffffffffffffffffffffffffffff8116808214610584578384fd5b84525060206bffffffffffffffffffffffff6105a1868301610428565b16908401529284019291840191600101610558565b50508093505050506bffffffffffffffffffffffff83166020830152949350505050565b8581527fffffffffffffffffffffffffffffffffffffffff000000000000000000000000851660208201527fffffffffffffffffffffffffff0000000000000000000000000000000000000084166034820152600083516106428160418501602088016104cd565b60419201918201929092526061019594505050505056fea2646970667358221220f8b589c09372efb15e6255feda8c22c01ffbfd45fdf9878c5e16767c247d310c64736f6c63430008160033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0x0761b0827849abbf7b0cC09CE14e1C93D87f5004
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.