Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 20859696 | 3 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
KatToken
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.28;
import {ERC20Permit, ERC20} from "dependencies/@openzeppelin-contracts-5.1.0/token/ERC20/extensions/ERC20Permit.sol";
import {PowUtil} from "./Powutil.sol";
/// @title Network token for the Katana chain
/// @author Polygon Labs (@ethyla)
/// @notice Standard ERC20 with added initial locking and inflation mechanisms
/// @dev Token is not upgradeable
contract KatToken is ERC20Permit {
/// @dev Inflation has been sent to the INFLATION_BENEFICIARY
event InflationDistributed(address receiver, uint256 amount);
/// @dev Inflation factor has been changed
event InflationChanged(uint256 oldValue, uint256 newValue);
/// @dev Mint capacity has been transferred, similar to transfer for token
event MintCapacityDistributed(address sender, address receiver, uint256 amount);
/// @dev Role change has been initiated
event RoleChangeStarted(address newHolder, bytes32 role);
/// @dev New role holder has accepted role, old holder got removed
event RoleChangeCompleted(address newHolder, bytes32 role);
// Roles
/// This role can set the inflation percentage
bytes32 public constant INFLATION_ADMIN = keccak256("INFLATION_ADMIN");
/// Receiver of the inflation in form of minting capacity, can distribute it away as needed
bytes32 public constant INFLATION_BENEFICIARY = keccak256("INFLATION_BENEFICIARY");
/// Can unlock the token early, no relocking
bytes32 public constant UNLOCKER = keccak256("UNLOCKER");
/// Can give and take the right to transfer during locking period
bytes32 public constant LOCK_EXEMPTION_ADMIN = keccak256("LOCK_EXEMPTION_ADMIN");
/// All current role holder
mapping(bytes32 => address) public roleHolder;
/// Potential new role holder, if they accept
mapping(bytes32 => address) public pendingRoleHolder;
// Inflation
/// Total token capacity after the last settlement
uint256 public distributedSupplyCap;
/// Blocktime of last inflated mintCapacity distribution
uint256 public lastMintCapacityIncrease;
// Inflation Factor
/// @notice Be careful when changing this, value needs to be set as the log2 of the expected inflation percentage
/// @notice Example: yearly inflation of 2% needs an inflationFactor of log2(1.02) = 0.028569152196770894e18
/// @notice Don't forget the decimals, also take a look at the tests in Inflation.t.sol
uint256 public inflationFactor;
/// Maximum configurable inflation (1337% annually)
/// @dev Added as a security measure against hostile INFLATION_ADMIN takeover
uint256 public constant MAX_INFLATION = 3.7409275603186281e18; // log2(13.37)
/// Mint capacity distributed from inflation, also initial mint capacity
mapping(address => uint256) public mintCapacity;
// Lock
/// Time of the unlock, can't be changed, lock definitely opens after this
uint256 public immutable unlockTime;
/// Overrides unlockTime to allow early unlocking, can't be used to lock again, also not required for time based unlocking
bool public locked = true;
/// Addresses exempted from the lock, can transfer and transferFrom (only if both spender and from are exempted) during lock
mapping(address => bool) lockExemption;
constructor(
string memory _name,
string memory _symbol,
address _inflationAdmin,
address _inflationBeneficiary,
address _distributor,
uint256 _unlockTime,
address _unlocker,
address _lockExemptionAdmin
) ERC20(_name, _symbol) ERC20Permit(_name) {
require(bytes(_name).length != 0);
require(bytes(_symbol).length != 0);
require(_inflationAdmin != address(0));
require(_inflationBeneficiary != address(0));
require(_distributor != address(0));
require(_unlockTime > block.timestamp);
// Unlock at most 24 months in the future
require(_unlockTime < block.timestamp + 24 * 30 days);
require(_unlocker != address(0));
require(_lockExemptionAdmin != address(0));
// Initial cap is 10 billion
uint256 initialDistribution = 10_000_000_000 * (10 ** decimals());
mintCapacity[_distributor] = initialDistribution;
distributedSupplyCap = initialDistribution;
// set to sane default value
lastMintCapacityIncrease = block.timestamp;
// Set initial inflation to 0
inflationFactor = 0;
// Assign roles
roleHolder[INFLATION_ADMIN] = _inflationAdmin;
roleHolder[INFLATION_BENEFICIARY] = _inflationBeneficiary;
roleHolder[UNLOCKER] = _unlocker;
roleHolder[LOCK_EXEMPTION_ADMIN] = _lockExemptionAdmin;
unlockTime = _unlockTime;
// Allow transfers for initial token distributor
lockExemption[_distributor] = true;
}
/**
* Check the caller has a specific role
* @param role The role the caller has to hold
*/
modifier hasRole(bytes32 role) {
require(roleHolder[role] == msg.sender, "Not role holder.");
_;
}
/**
* Function to change the current holder of a role, can only be used by current role holder
* @notice To finalize the change the new holder needs to call acceptRole()
* @param newRoleOwner The the new role holder
* @param role The role being transferred
*/
function changeRoleHolder(address newRoleOwner, bytes32 role) external hasRole(role) {
pendingRoleHolder[role] = newRoleOwner;
emit RoleChangeStarted(newRoleOwner, role);
}
/**
* Function to accept a role holder change proposal
* @notice Only the pending role holder can accept
* @param role The role being accepted
*/
function acceptRole(bytes32 role) external {
require(pendingRoleHolder[role] == msg.sender, "Not new role holder.");
roleHolder[role] = pendingRoleHolder[role];
pendingRoleHolder[role] = address(0);
emit RoleChangeCompleted(roleHolder[role], role);
}
/**
* Function to renounce the inflationAdmin role
* @notice This can't be reverted
* @notice Inflation can be higher than 0 and INFLATION_BENEFICIARY can still be changed
*/
function renounceInflationAdmin() external hasRole(INFLATION_ADMIN) {
require(pendingRoleHolder[INFLATION_ADMIN] == address(0), "Role transfer in progress.");
roleHolder[INFLATION_ADMIN] = address(0);
emit RoleChangeCompleted(address(0), INFLATION_ADMIN);
}
/**
* Function to renounce the inflationBeneficiary role
* @notice This can't be reverted
* @notice Can only happen once inflation is 0 and INFLATION_ADMIN is renounced
*/
function renounceInflationBeneficiary() external hasRole(INFLATION_BENEFICIARY) {
require(pendingRoleHolder[INFLATION_BENEFICIARY] == address(0), "Role transfer in progress.");
require(inflationFactor == 0, "Inflation not zero.");
require(roleHolder[INFLATION_ADMIN] == address(0), "Inflation admin not 0.");
require(pendingRoleHolder[INFLATION_ADMIN] == address(0), "Role transfer in progress.");
roleHolder[INFLATION_BENEFICIARY] = address(0);
emit RoleChangeCompleted(address(0), INFLATION_BENEFICIARY);
}
/**
* Unlocks the claim function early, afterwards contract can't be locked again
* @dev Can be used after unlock to clean unlocker variable
*/
function unlockAndRenounceUnlocker() external hasRole(UNLOCKER) {
locked = false;
roleHolder[UNLOCKER] = address(0);
pendingRoleHolder[UNLOCKER] = address(0);
emit RoleChangeCompleted(address(0), UNLOCKER);
}
/**
* Renounces the LOCK_EXEMPTION_ADMIN
* @dev Can be used after unlock to clean LOCK_EXEMPTION_ADMIN variable
* @dev For full cleaning lockExemption needs to be manually emptied
*/
function renounceLockExemptionAdmin() external hasRole(LOCK_EXEMPTION_ADMIN) {
roleHolder[LOCK_EXEMPTION_ADMIN] = address(0);
pendingRoleHolder[LOCK_EXEMPTION_ADMIN] = address(0);
emit RoleChangeCompleted(address(0), LOCK_EXEMPTION_ADMIN);
}
/**
* Check whether token is unlocked and freely transferable
* @return true if either the unlock time has passed or a manual unlock has occurred
*/
function isUnlocked() public view returns (bool) {
return (block.timestamp > unlockTime) || !locked;
}
/**
* Adds (or removes) an address to allow it to transfer during the lock period
* @param user The address whose permission is being changed
* @param value The new permission status
*/
function setLockExemption(address user, bool value) external hasRole(LOCK_EXEMPTION_ADMIN) {
lockExemption[user] = value;
}
/**
* Sets a new inflation factor starting immediately.
* @notice Has to be in the format log2(1.xx) with xx being the yearly inflation in percent
* @dev Inflation until now will get distributed immediately using the old inflation factor
* @param value The new inflation factor
*/
function changeInflation(uint256 value) external hasRole(INFLATION_ADMIN) {
require(roleHolder[INFLATION_BENEFICIARY] != address(0), "No inflation beneficiary.");
require(value <= MAX_INFLATION, "Inflation too large.");
distributeInflation();
uint256 oldValue = inflationFactor;
inflationFactor = value;
emit InflationChanged(oldValue, value);
}
/**
* Calculates the current total cap of the token.
* @notice Already minted and not yet minted token amounts add up to this value
* @return The current total token cap
*/
function cap() external view returns (uint256) {
return distributedSupplyCap + _calcInflation();
}
/**
* Calculates the inflation since the last distribution till now, using the current inflation factor
* @return The unrealized inflation since the last realization
*/
function _calcInflation() internal view returns (uint256) {
if (lastMintCapacityIncrease == block.timestamp) {
return 0;
}
uint256 timeElapsed = block.timestamp - lastMintCapacityIncrease;
uint256 supplyFactor = PowUtil.exp2((inflationFactor * timeElapsed) / 365 days);
uint256 newCap = (supplyFactor * distributedSupplyCap) / 1e18;
return newCap - distributedSupplyCap;
}
/**
* Fully realizes newly available inflation as mint capacity to the INFLATION_BENEFICIARY
*/
function distributeInflation() public {
uint256 inflation = _calcInflation();
address inflationBeneficiary = roleHolder[INFLATION_BENEFICIARY];
distributedSupplyCap += inflation;
mintCapacity[inflationBeneficiary] += inflation;
lastMintCapacityIncrease = block.timestamp;
emit InflationDistributed(inflationBeneficiary, inflation);
}
/**
* Distributes mint capacity to a minter
* @param to Receiver of the mint capacity
* @param amount Amount to be transferred as mint capacity
*/
function distributeMintCapacity(address to, uint256 amount) external {
require(to != address(0), "Sending to 0 address");
require(mintCapacity[msg.sender] >= amount, "Not enough mint capacity.");
mintCapacity[msg.sender] -= amount;
mintCapacity[to] += amount;
emit MintCapacityDistributed(msg.sender, to, amount);
}
/**
* Mint within confines of mint capacity
* @param to Receiver of the newly minted tokens
* @param amount Amount to be minted
*/
function mint(address to, uint256 amount) external {
require(mintCapacity[msg.sender] >= amount, "Not enough mint capacity.");
mintCapacity[msg.sender] -= amount;
_mint(to, amount);
}
/**
* Override _update to check if lock is still in place
* Additionally check if `from` is allowed early transfers
* @inheritdoc ERC20
*/
function _update(address from, address to, uint256 amount) internal override {
if (block.timestamp > unlockTime || !locked) {
super._update(from, to, amount);
}
// Only allow transfer for lockExempted addresses during lock
// transferFrom is disallowed during lock
else if (lockExemption[from] && from == msg.sender) {
super._update(from, to, amount);
} else if (from == address(0)) {
super._update(from, to, amount);
} else {
revert("Token locked.");
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}//SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
library PowUtil {
function exp2(uint256 x) internal pure returns (uint256 result) {
// based on https://github.com/PaulRBerg/prb-math/blob/5959ef59f906d689c2472ed08797872a1cc00644/src/Common.sol#L54
// usually we would make sure that the number doesn't overflow
// assert(product <= 192e18 - 1);
// but it won't overflow in the next 1000 years
// should it overflow at some point which is more than unlikely, the returned supply factor will be 0
x = (x << 64) / 1e18;
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0)
result = (result * 0x16A09E667F3BCC909) >> 64;
if (x & 0x4000000000000000 > 0)
result = (result * 0x1306FE0A31B7152DF) >> 64;
if (x & 0x2000000000000000 > 0)
result = (result * 0x1172B83C7D517ADCE) >> 64;
if (x & 0x1000000000000000 > 0)
result = (result * 0x10B5586CF9890F62A) >> 64;
if (x & 0x800000000000000 > 0)
result = (result * 0x1059B0D31585743AE) >> 64;
if (x & 0x400000000000000 > 0)
result = (result * 0x102C9A3E778060EE7) >> 64;
if (x & 0x200000000000000 > 0)
result = (result * 0x10163DA9FB33356D8) >> 64;
if (x & 0x100000000000000 > 0)
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0)
result = (result * 0x10058C86DA1C09EA2) >> 64;
if (x & 0x40000000000000 > 0)
result = (result * 0x1002C605E2E8CEC50) >> 64;
if (x & 0x20000000000000 > 0)
result = (result * 0x100162F3904051FA1) >> 64;
if (x & 0x10000000000000 > 0)
result = (result * 0x1000B175EFFDC76BA) >> 64;
if (x & 0x8000000000000 > 0)
result = (result * 0x100058BA01FB9F96D) >> 64;
if (x & 0x4000000000000 > 0)
result = (result * 0x10002C5CC37DA9492) >> 64;
if (x & 0x2000000000000 > 0)
result = (result * 0x1000162E525EE0547) >> 64;
if (x & 0x1000000000000 > 0)
result = (result * 0x10000B17255775C04) >> 64;
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0)
result = (result * 0x1000058B91B5BC9AE) >> 64;
if (x & 0x400000000000 > 0)
result = (result * 0x100002C5C89D5EC6D) >> 64;
if (x & 0x200000000000 > 0)
result = (result * 0x10000162E43F4F831) >> 64;
if (x & 0x100000000000 > 0)
result = (result * 0x100000B1721BCFC9A) >> 64;
if (x & 0x80000000000 > 0)
result = (result * 0x10000058B90CF1E6E) >> 64;
if (x & 0x40000000000 > 0)
result = (result * 0x1000002C5C863B73F) >> 64;
if (x & 0x20000000000 > 0)
result = (result * 0x100000162E430E5A2) >> 64;
if (x & 0x10000000000 > 0)
result = (result * 0x1000000B172183551) >> 64;
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0)
result = (result * 0x100000058B90C0B49) >> 64;
if (x & 0x4000000000 > 0)
result = (result * 0x10000002C5C8601CC) >> 64;
if (x & 0x2000000000 > 0)
result = (result * 0x1000000162E42FFF0) >> 64;
if (x & 0x1000000000 > 0)
result = (result * 0x10000000B17217FBB) >> 64;
if (x & 0x800000000 > 0)
result = (result * 0x1000000058B90BFCE) >> 64;
if (x & 0x400000000 > 0)
result = (result * 0x100000002C5C85FE3) >> 64;
if (x & 0x200000000 > 0)
result = (result * 0x10000000162E42FF1) >> 64;
if (x & 0x100000000 > 0)
result = (result * 0x100000000B17217F8) >> 64;
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0)
result = (result * 0x10000000058B90BFC) >> 64;
if (x & 0x40000000 > 0)
result = (result * 0x1000000002C5C85FE) >> 64;
if (x & 0x20000000 > 0)
result = (result * 0x100000000162E42FF) >> 64;
if (x & 0x10000000 > 0)
result = (result * 0x1000000000B17217F) >> 64;
if (x & 0x8000000 > 0)
result = (result * 0x100000000058B90C0) >> 64;
if (x & 0x4000000 > 0)
result = (result * 0x10000000002C5C860) >> 64;
if (x & 0x2000000 > 0)
result = (result * 0x1000000000162E430) >> 64;
if (x & 0x1000000 > 0)
result = (result * 0x10000000000B17218) >> 64;
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0)
result = (result * 0x1000000000058B90C) >> 64;
if (x & 0x400000 > 0)
result = (result * 0x100000000002C5C86) >> 64;
if (x & 0x200000 > 0)
result = (result * 0x10000000000162E43) >> 64;
if (x & 0x100000 > 0)
result = (result * 0x100000000000B1721) >> 64;
if (x & 0x80000 > 0)
result = (result * 0x10000000000058B91) >> 64;
if (x & 0x40000 > 0)
result = (result * 0x1000000000002C5C8) >> 64;
if (x & 0x20000 > 0)
result = (result * 0x100000000000162E4) >> 64;
if (x & 0x10000 > 0)
result = (result * 0x1000000000000B172) >> 64;
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0)
result = (result * 0x100000000000058B9) >> 64;
if (x & 0x4000 > 0)
result = (result * 0x10000000000002C5D) >> 64;
if (x & 0x2000 > 0)
result = (result * 0x1000000000000162E) >> 64;
if (x & 0x1000 > 0)
result = (result * 0x10000000000000B17) >> 64;
if (x & 0x800 > 0)
result = (result * 0x1000000000000058C) >> 64;
if (x & 0x400 > 0)
result = (result * 0x100000000000002C6) >> 64;
if (x & 0x200 > 0)
result = (result * 0x10000000000000163) >> 64;
if (x & 0x100 > 0)
result = (result * 0x100000000000000B1) >> 64;
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) result = (result * 0x10000000000000059) >> 64;
if (x & 0x40 > 0) result = (result * 0x1000000000000002C) >> 64;
if (x & 0x20 > 0) result = (result * 0x10000000000000016) >> 64;
if (x & 0x10 > 0) result = (result * 0x1000000000000000B) >> 64;
if (x & 0x8 > 0) result = (result * 0x10000000000000006) >> 64;
if (x & 0x4 > 0) result = (result * 0x10000000000000003) >> 64;
if (x & 0x2 > 0) result = (result * 0x10000000000000001) >> 64;
if (x & 0x1 > 0) result = (result * 0x10000000000000001) >> 64;
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= 1e18;
result >>= (191 - (x >> 64));
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}{
"remappings": [
"@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
"forge-std-1.9.4/=dependencies/forge-std-1.9.4/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"address","name":"_inflationAdmin","type":"address"},{"internalType":"address","name":"_inflationBeneficiary","type":"address"},{"internalType":"address","name":"_distributor","type":"address"},{"internalType":"uint256","name":"_unlockTime","type":"uint256"},{"internalType":"address","name":"_unlocker","type":"address"},{"internalType":"address","name":"_lockExemptionAdmin","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newValue","type":"uint256"}],"name":"InflationChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"InflationDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"MintCapacityDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newHolder","type":"address"},{"indexed":false,"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"RoleChangeCompleted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newHolder","type":"address"},{"indexed":false,"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"RoleChangeStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INFLATION_ADMIN","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INFLATION_BENEFICIARY","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LOCK_EXEMPTION_ADMIN","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_INFLATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNLOCKER","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"acceptRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"changeInflation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newRoleOwner","type":"address"},{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"changeRoleHolder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"distributeInflation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"distributeMintCapacity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"distributedSupplyCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"inflationFactor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isUnlocked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastMintCapacityIncrease","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"locked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"mintCapacity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"pendingRoleHolder","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceInflationAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceInflationBeneficiary","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceLockExemptionAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"roleHolder","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"bool","name":"value","type":"bool"}],"name":"setLockExemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockAndRenounceUnlocker","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
610180604052600e805460ff1916600117905534801561001d575f5ffd5b5060405161302938038061302983398101604081905261003c9161041e565b6040805180820190915260018152603160f81b602082015288908190818a60036100668382610561565b5060046100738282610561565b50610083915083905060056102ee565b610120526100928160066102ee565b61014052815160208084019190912060e052815190820120610100524660a05261011e60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c0525087515f03610134575f5ffd5b86515f03610140575f5ffd5b6001600160a01b038616610152575f5ffd5b6001600160a01b038516610164575f5ffd5b6001600160a01b038416610176575f5ffd5b428311610181575f5ffd5b61018f426303b5380061062f565b8310610199575f5ffd5b6001600160a01b0382166101ab575f5ffd5b6001600160a01b0381166101bd575f5ffd5b5f6101ca6012600a610725565b6101d9906402540be40061073a565b6001600160a01b039586165f908152600d60209081526040808320849055600a9390935542600b55600c8290557fb521cc951ed9755340601b8a7f63a0bd6c89110fdd21850902bb60ab4fc3f7b080549a89166001600160a01b03199b8c161790557fef99cce924c96d8dbe2300db77854d44fa213667cf26fababda543a2fa80b5c98054998916998b16999099179098557ffe18803ae90e6065a13f80d13c726a612a5f4bde35c678d0a6892ebcb7910d758054958816958a16959095179094557fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c805493909616929097169190911790935561016091909152600f9092525020805460ff19166001179055506107a99050565b5f6020835110156103095761030283610320565b905061031a565b816103148482610561565b5060ff90505b92915050565b5f5f829050601f81511115610353578260405163305a27a960e01b815260040161034a9190610751565b60405180910390fd5b805161035e82610786565b179392505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f830112610389575f5ffd5b81516001600160401b038111156103a2576103a2610366565b604051601f8201601f19908116603f011681016001600160401b03811182821017156103d0576103d0610366565b6040528181528382016020018510156103e7575f5ffd5b8160208501602083015e5f918101602001919091529392505050565b80516001600160a01b0381168114610419575f5ffd5b919050565b5f5f5f5f5f5f5f5f610100898b031215610436575f5ffd5b88516001600160401b0381111561044b575f5ffd5b6104578b828c0161037a565b60208b015190995090506001600160401b03811115610474575f5ffd5b6104808b828c0161037a565b97505061048f60408a01610403565b955061049d60608a01610403565b94506104ab60808a01610403565b935060a089015192506104c060c08a01610403565b91506104ce60e08a01610403565b90509295985092959890939650565b600181811c908216806104f157607f821691505b60208210810361050f57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561055c57805f5260205f20601f840160051c8101602085101561053a5750805b601f840160051c820191505b81811015610559575f8155600101610546565b50505b505050565b81516001600160401b0381111561057a5761057a610366565b61058e8161058884546104dd565b84610515565b6020601f8211600181146105c0575f83156105a95750848201515b5f19600385901b1c1916600184901b178455610559565b5f84815260208120601f198516915b828110156105ef57878501518255602094850194600190920191016105cf565b508482101561060c57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561031a5761031a61061b565b6001815b600184111561067d578085048111156106615761066161061b565b600184161561066f57908102905b60019390931c928002610646565b935093915050565b5f826106935750600161031a565b8161069f57505f61031a565b81600181146106b557600281146106bf576106db565b600191505061031a565b60ff8411156106d0576106d061061b565b50506001821b61031a565b5060208310610133831016604e8410600b84101617156106fe575081810a61031a565b61070a5f198484610642565b805f190482111561071d5761071d61061b565b029392505050565b5f61073360ff841683610685565b9392505050565b808202811582820484141761031a5761031a61061b565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b8051602080830151919081101561050f575f1960209190910360031b1b16919050565b60805160a05160c05160e051610100516101205161014051610160516128176108125f395f81816102c101528181610dcb01526117a601525f61165401525f61162701525f61159c01525f61157401525f6114cf01525f6114f901525f61152301526128175ff3fe608060405234801561000f575f5ffd5b5060043610610234575f3560e01c806370a0823111610135578063c23e9707116100b4578063dd62ed3e11610079578063dd62ed3e146104ee578063e4a063c314610526578063ed3de2e31461052f578063f8205ebb14610543578063fdb04bbf14610556575f5ffd5b8063c23e9707146104aa578063c373fee3146104b3578063cf309012146104bb578063d18ced1d146104c8578063d505accf146104db575f5ffd5b8063866558e9116100fa578063866558e914610440578063886eaddc1461045f5780639286c9311461046757806395d89b411461048f578063a9059cbb14610497575f5ffd5b806370a08231146103bb57806378150ff8146103e35780637ecebe001461040a5780638380edb71461041d57806384b0196e14610425575f5ffd5b8063343b3cde116101c157806340c10f191161018657806340c10f191461037057806344dd936c146103835780634d3591ec1461038c5780634e5a7680146103a05780635cfd8a65146103a8575f5ffd5b8063343b3cde14610305578063355274ea146103455780633644e5151461034d57806336fc1787146103555780633f5090ee14610368575f5ffd5b80631fe2256b116102075780631fe2256b1461029557806323b872dd146102a9578063251c1aa3146102bc5780632b911eaf146102e3578063313ce567146102f6575f5ffd5b806306fdde0314610238578063095ea7b31461025657806318160ddd146102795780631bf544431461028b575b5f5ffd5b610240610565565b60405161024d91906123d1565b60405180910390f35b610269610264366004612405565b6105f5565b604051901515815260200161024d565b6002545b60405190815260200161024d565b61029361060e565b005b61027d5f5160206127c25f395f51905f5281565b6102696102b736600461242d565b610715565b61027d7f000000000000000000000000000000000000000000000000000000000000000081565b6102936102f1366004612467565b610738565b6040516012815260200161024d565b61032d6103133660046124a0565b60086020525f90815260409020546001600160a01b031681565b6040516001600160a01b03909116815260200161024d565b61027d6107c3565b61027d6107de565b6102936103633660046124a0565b6107e7565b6102936108a1565b61029361037e366004612405565b6109a3565b61027d600a5481565b61027d5f5160206127a25f395f51905f5281565b610293610a2f565b6102936103b63660046124a0565b610c47565b61027d6103c93660046124b7565b6001600160a01b03165f9081526020819052604090205490565b61027d7f54c9b4c80715cee47dde7f1b62b0c6cd06cacb92458efa077def5f27d03415d481565b61027d6104183660046124b7565b610dab565b610269610dc8565b61042d610dfd565b60405161024d97969594939291906124d0565b61027d61044e3660046124b7565b600d6020525f908152604090205481565b610293610e3f565b61032d6104753660046124a0565b60096020525f90815260409020546001600160a01b031681565b610240610f66565b6102696104a5366004612405565b610f75565b61027d600b5481565b610293610f82565b600e546102699060ff1681565b6102936104d6366004612405565b61104e565b6102936104e9366004612566565b6110e5565b61027d6104fc3660046125d3565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61027d600c5481565b61027d5f5160206127625f395f51905f5281565b610293610551366004612405565b61121b565b61027d6733ea71cbbb42b10481565b60606003805461057490612604565b80601f01602080910402602001604051908101604052809291908181526020018280546105a090612604565b80156105eb5780601f106105c2576101008083540402835291602001916105eb565b820191905f5260205f20905b8154815290600101906020018083116105ce57829003601f168201915b5050505050905090565b5f33610602818585611357565b60019150505b92915050565b5f5160206127c25f395f51905f525f81905260086020527fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c546001600160a01b031633146106775760405162461bcd60e51b815260040161066e9061263c565b60405180910390fd5b5f5160206127c25f395f51905f525f8181527fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c80546001600160a01b0319908116909155600960209081527f2cfeb242b3e2a551873efb7f5409af68ae82192c4daa647b798f6ffd68dbdbeb805490921690915560408051928352908201929092525f5160206127825f395f51905f5291015b60405180910390a150565b5f33610722858285611369565b61072d8585856113e4565b506001949350505050565b5f5160206127c25f395f51905f525f81905260086020527fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c546001600160a01b031633146107985760405162461bcd60e51b815260040161066e9061263c565b506001600160a01b03919091165f908152600f60205260409020805460ff1916911515919091179055565b5f6107cc611441565b600a546107d9919061267a565b905090565b5f6107d96114c3565b5f818152600960205260409020546001600160a01b031633146108435760405162461bcd60e51b81526020600482015260146024820152732737ba103732bb903937b632903437b63232b91760611b604482015260640161066e565b5f8181526009602090815260408083208054600884529382902080546001600160a01b039586166001600160a01b0319918216178255825416909155548151931683529082018390525f5160206127825f395f51905f52910161070a565b5f5160206127a25f395f51905f525f81905260086020525f5160206127425f395f51905f52546001600160a01b031633146108ee5760405162461bcd60e51b815260040161066e9061263c565b5f5160206127a25f395f51905f525f5260096020527ff20486fe1a2a0fc5e4d4f4bd2ea802b01028bd0d3680182b6ac378d9234898a7546001600160a01b03161561094b5760405162461bcd60e51b815260040161066e9061268d565b5f5160206127a25f395f51905f525f818152600860209081525f5160206127425f395f51905f5280546001600160a01b031916905560408051928352908201929092525f5160206127825f395f51905f52910161070a565b335f908152600d60205260409020548111156109fd5760405162461bcd60e51b81526020600482015260196024820152782737ba1032b737bab3b41036b4b73a1031b0b830b1b4ba3c9760391b604482015260640161066e565b335f908152600d602052604081208054839290610a1b9084906126c4565b90915550610a2b905082826115ec565b5050565b5f5160206127625f395f51905f525f81905260086020525f5160206127225f395f51905f52546001600160a01b03163314610a7c5760405162461bcd60e51b815260040161066e9061263c565b5f5160206127625f395f51905f525f5260096020527f3f9d107ab11d3fd2cdd10e4d1851944c81a2523e5341fb140b585ded940719bf546001600160a01b031615610ad95760405162461bcd60e51b815260040161066e9061268d565b600c5415610b1f5760405162461bcd60e51b815260206004820152601360248201527224b7333630ba34b7b7103737ba103d32b9379760691b604482015260640161066e565b5f5160206127a25f395f51905f525f5260086020525f5160206127425f395f51905f52546001600160a01b031615610b925760405162461bcd60e51b815260206004820152601660248201527524b7333630ba34b7b71030b236b4b7103737ba10181760511b604482015260640161066e565b5f5160206127a25f395f51905f525f5260096020527ff20486fe1a2a0fc5e4d4f4bd2ea802b01028bd0d3680182b6ac378d9234898a7546001600160a01b031615610bef5760405162461bcd60e51b815260040161066e9061268d565b5f5160206127625f395f51905f525f818152600860209081525f5160206127225f395f51905f5280546001600160a01b031916905560408051928352908201929092525f5160206127825f395f51905f52910161070a565b5f5160206127a25f395f51905f525f81905260086020525f5160206127425f395f51905f52546001600160a01b03163314610c945760405162461bcd60e51b815260040161066e9061263c565b5f5160206127625f395f51905f525f5260086020525f5160206127225f395f51905f52546001600160a01b0316610d0d5760405162461bcd60e51b815260206004820152601960248201527f4e6f20696e666c6174696f6e2062656e65666963696172792e00000000000000604482015260640161066e565b6733ea71cbbb42b104821115610d5c5760405162461bcd60e51b815260206004820152601460248201527324b7333630ba34b7b7103a37b7903630b933b29760611b604482015260640161066e565b610d64610f82565b600c80549083905560408051828152602081018590527f0c347accb94360b551ed917758bc5358525405e1b91ac5407913b81d4c3e86b691015b60405180910390a1505050565b6001600160a01b0381165f90815260076020526040812054610608565b5f7f00000000000000000000000000000000000000000000000000000000000000004211806107d9575050600e5460ff161590565b5f6060805f5f5f6060610e0e611620565b610e1661164d565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b7f54c9b4c80715cee47dde7f1b62b0c6cd06cacb92458efa077def5f27d03415d45f81905260086020527ffe18803ae90e6065a13f80d13c726a612a5f4bde35c678d0a6892ebcb7910d75546001600160a01b03163314610eb25760405162461bcd60e51b815260040161066e9061263c565b600e805460ff191690557f54c9b4c80715cee47dde7f1b62b0c6cd06cacb92458efa077def5f27d03415d45f8181527ffe18803ae90e6065a13f80d13c726a612a5f4bde35c678d0a6892ebcb7910d7580546001600160a01b0319908116909155600960209081527ffe4fa762c7c70a39e2a3cadfc51d39dffde606fcc63dc244c53ce43f7dbb091a805490921690915560408051928352908201929092525f5160206127825f395f51905f52910161070a565b60606004805461057490612604565b5f336106028185856113e4565b5f610f8b611441565b5f5160206127625f395f51905f525f90815260086020525f5160206127225f395f51905f5254600a80549394506001600160a01b0390911692849290610fd290849061267a565b90915550506001600160a01b0381165f908152600d602052604081208054849290610ffe90849061267a565b909155505042600b55604080516001600160a01b0383168152602081018490527f853d3d7e29278422c75860e77aff784c6587d84b19d0e212f562b91f60b3390f91015b60405180910390a15050565b5f8181526008602052604090205481906001600160a01b031633146110855760405162461bcd60e51b815260040161066e9061263c565b5f8281526009602090815260409182902080546001600160a01b0319166001600160a01b03871690811790915582519081529081018490527fe925262108dd98ff133f1ba628eb25c76de057168ddd49910ab8eaba84b792fe9101610d9e565b834211156111095760405163313c898160e11b81526004810185905260240161066e565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886111548c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6111ae8261167a565b90505f6111bd828787876116a6565b9050896001600160a01b0316816001600160a01b031614611204576040516325c0072360e11b81526001600160a01b0380831660048301528b16602482015260440161066e565b61120f8a8a8a611357565b50505050505050505050565b6001600160a01b0382166112685760405162461bcd60e51b815260206004820152601460248201527353656e64696e6720746f2030206164647265737360601b604482015260640161066e565b335f908152600d60205260409020548111156112c25760405162461bcd60e51b81526020600482015260196024820152782737ba1032b737bab3b41036b4b73a1031b0b830b1b4ba3c9760391b604482015260640161066e565b335f908152600d6020526040812080548392906112e09084906126c4565b90915550506001600160a01b0382165f908152600d60205260408120805483929061130c90849061267a565b9091555050604080513381526001600160a01b03841660208201529081018290527f447b0379ed6803974a36a2a794fced1ee7777a67630a29f50f88924f80876a0490606001611042565b61136483838360016116d2565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981146113de57818110156113d057604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161066e565b6113de84848484035f6116d2565b50505050565b6001600160a01b03831661140d57604051634b637e8f60e11b81525f600482015260240161066e565b6001600160a01b0382166114365760405163ec442f0560e01b81525f600482015260240161066e565b6113648383836117a4565b5f42600b540361145057505f90565b5f600b544261145f91906126c4565b90505f6114876301e1338083600c5461147891906126d7565b61148291906126ee565b611875565b90505f670de0b6b3a7640000600a54836114a191906126d7565b6114ab91906126ee565b9050600a54816114bb91906126c4565b935050505090565b5f306001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614801561151b57507f000000000000000000000000000000000000000000000000000000000000000046145b1561154557507f000000000000000000000000000000000000000000000000000000000000000090565b6107d9604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0382166116155760405163ec442f0560e01b81525f600482015260240161066e565b610a2b5f83836117a4565b60606107d97f00000000000000000000000000000000000000000000000000000000000000006005611ff0565b60606107d97f00000000000000000000000000000000000000000000000000000000000000006006611ff0565b5f6106086116866114c3565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f6116b688888888612099565b9250925092506116c68282612161565b50909695505050505050565b6001600160a01b0384166116fb5760405163e602df0560e01b81525f600482015260240161066e565b6001600160a01b03831661172457604051634a1406b160e11b81525f600482015260240161066e565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156113de57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161179691815260200190565b60405180910390a350505050565b7f00000000000000000000000000000000000000000000000000000000000000004211806117d55750600e5460ff16155b156117e557611364838383612219565b6001600160a01b0383165f908152600f602052604090205460ff16801561181457506001600160a01b03831633145b1561182457611364838383612219565b6001600160a01b03831661183d57611364838383612219565b60405162461bcd60e51b815260206004820152600d60248201526c2a37b5b2b7103637b1b5b2b21760991b604482015260640161066e565b5f61188c670de0b6b3a7640000604084901b6126ee565b9150600160bf1b905067ff0000000000000082161561199d576780000000000000008216156118c45768016a09e667f3bcc9090260401c5b6740000000000000008216156118e3576801306fe0a31b7152df0260401c5b672000000000000000821615611902576801172b83c7d517adce0260401c5b6710000000000000008216156119215768010b5586cf9890f62a0260401c5b670800000000000000821615611940576801059b0d31585743ae0260401c5b67040000000000000082161561195f57680102c9a3e778060ee70260401c5b67020000000000000082161561197e5768010163da9fb33356d80260401c5b67010000000000000082161561199d57680100b1afa5abcbed610260401c5b66ff000000000000821615611a9c5766800000000000008216156119ca5768010058c86da1c09ea20260401c5b66400000000000008216156119e8576801002c605e2e8cec500260401c5b6620000000000000821615611a0657680100162f3904051fa10260401c5b6610000000000000821615611a24576801000b175effdc76ba0260401c5b6608000000000000821615611a4257680100058ba01fb9f96d0260401c5b6604000000000000821615611a605768010002c5cc37da94920260401c5b6602000000000000821615611a7e576801000162e525ee05470260401c5b6601000000000000821615611a9c5768010000b17255775c040260401c5b65ff0000000000821615611b925765800000000000821615611ac7576801000058b91b5bc9ae0260401c5b65400000000000821615611ae457680100002c5c89d5ec6d0260401c5b65200000000000821615611b015768010000162e43f4f8310260401c5b65100000000000821615611b1e57680100000b1721bcfc9a0260401c5b65080000000000821615611b3b5768010000058b90cf1e6e0260401c5b65040000000000821615611b58576801000002c5c863b73f0260401c5b65020000000000821615611b7557680100000162e430e5a20260401c5b65010000000000821615611b92576801000000b1721835510260401c5b64ff00000000821615611c7f57648000000000821615611bbb57680100000058b90c0b490260401c5b644000000000821615611bd75768010000002c5c8601cc0260401c5b642000000000821615611bf3576801000000162e42fff00260401c5b641000000000821615611c0f5768010000000b17217fbb0260401c5b640800000000821615611c2b576801000000058b90bfce0260401c5b640400000000821615611c4757680100000002c5c85fe30260401c5b640200000000821615611c635768010000000162e42ff10260401c5b640100000000821615611c7f57680100000000b17217f80260401c5b63ff000000821615611d63576380000000821615611ca65768010000000058b90bfc0260401c5b6340000000821615611cc1576801000000002c5c85fe0260401c5b6320000000821615611cdc57680100000000162e42ff0260401c5b6310000000821615611cf7576801000000000b17217f0260401c5b6308000000821615611d1257680100000000058b90c00260401c5b6304000000821615611d2d5768010000000002c5c8600260401c5b6302000000821615611d48576801000000000162e4300260401c5b6301000000821615611d635768010000000000b172180260401c5b62ff0000821615611e3e5762800000821615611d88576801000000000058b90c0260401c5b62400000821615611da257680100000000002c5c860260401c5b62200000821615611dbc5768010000000000162e430260401c5b62100000821615611dd657680100000000000b17210260401c5b62080000821615611df05768010000000000058b910260401c5b62040000821615611e0a576801000000000002c5c80260401c5b62020000821615611e2457680100000000000162e40260401c5b62010000821615611e3e576801000000000000b1720260401c5b61ff00821615611f1057618000821615611e6157680100000000000058b90260401c5b614000821615611e7a5768010000000000002c5d0260401c5b612000821615611e93576801000000000000162e0260401c5b611000821615611eac5768010000000000000b170260401c5b610800821615611ec5576801000000000000058c0260401c5b610400821615611ede57680100000000000002c60260401c5b610200821615611ef757680100000000000001630260401c5b610100821615611f1057680100000000000000b10260401c5b60ff821615611fd9576080821615611f3157680100000000000000590260401c5b6040821615611f49576801000000000000002c0260401c5b6020821615611f6157680100000000000000160260401c5b6010821615611f79576801000000000000000b0260401c5b6008821615611f9157680100000000000000060260401c5b6004821615611fa957680100000000000000030260401c5b6002821615611fc157680100000000000000010260401c5b6001821615611fd957680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b606060ff831461200a576120038361233f565b9050610608565b81805461201690612604565b80601f016020809104026020016040519081016040528092919081815260200182805461204290612604565b801561208d5780601f106120645761010080835404028352916020019161208d565b820191905f5260205f20905b81548152906001019060200180831161207057829003601f168201915b50505050509050610608565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156120d257505f91506003905082612157565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612123573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661214e57505f925060019150829050612157565b92505f91508190505b9450945094915050565b5f8260038111156121745761217461270d565b0361217d575050565b60018260038111156121915761219161270d565b036121af5760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156121c3576121c361270d565b036121e45760405163fce698f760e01b81526004810182905260240161066e565b60038260038111156121f8576121f861270d565b03610a2b576040516335e2f38360e21b81526004810182905260240161066e565b6001600160a01b038316612243578060025f828254612238919061267a565b909155506122b39050565b6001600160a01b0383165f90815260208190526040902054818110156122955760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640161066e565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166122cf576002805482900390556122ed565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161233291815260200190565b60405180910390a3505050565b60605f61234b8361237c565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f81111561060857604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6123e360208301846123a3565b9392505050565b80356001600160a01b0381168114612400575f5ffd5b919050565b5f5f60408385031215612416575f5ffd5b61241f836123ea565b946020939093013593505050565b5f5f5f6060848603121561243f575f5ffd5b612448846123ea565b9250612456602085016123ea565b929592945050506040919091013590565b5f5f60408385031215612478575f5ffd5b612481836123ea565b915060208301358015158114612495575f5ffd5b809150509250929050565b5f602082840312156124b0575f5ffd5b5035919050565b5f602082840312156124c7575f5ffd5b6123e3826123ea565b60ff60f81b8816815260e060208201525f6124ee60e08301896123a3565b828103604084015261250081896123a3565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015612555578351835260209384019390920191600101612537565b50909b9a5050505050505050505050565b5f5f5f5f5f5f5f60e0888a03121561257c575f5ffd5b612585886123ea565b9650612593602089016123ea565b95506040880135945060608801359350608088013560ff811681146125b6575f5ffd5b9699959850939692959460a0840135945060c09093013592915050565b5f5f604083850312156125e4575f5ffd5b6125ed836123ea565b91506125fb602084016123ea565b90509250929050565b600181811c9082168061261857607f821691505b60208210810361263657634e487b7160e01b5f52602260045260245ffd5b50919050565b60208082526010908201526f2737ba103937b632903437b63232b91760811b604082015260600190565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561060857610608612666565b6020808252601a908201527f526f6c65207472616e7366657220696e2070726f67726573732e000000000000604082015260600190565b8181038181111561060857610608612666565b808202811582820484141761060857610608612666565b5f8261270857634e487b7160e01b5f52601260045260245ffd5b500490565b634e487b7160e01b5f52602160045260245ffdfeef99cce924c96d8dbe2300db77854d44fa213667cf26fababda543a2fa80b5c9b521cc951ed9755340601b8a7f63a0bd6c89110fdd21850902bb60ab4fc3f7b00ec560a57e72e1ad7c888fa95b5a74170e915e2173a447b50c3cefd1fe82f510f54f5cceb448ef806753e004d4516a584e5d52ee04e57717762f87bd2cce6e9bf8541c194a0b2749cdcc163377d32fae37700c72cef0857ad24aa49792741b2ef8bea3b6ac1f7ecd96cf424727980e36f4569781fe0559ce9088bb153106d262a2646970667358221220d20e3e7bea2138b4be8bc580553b4d96090aa3d650e080302cea4e34031b0e6764736f6c634300081c003300000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d0000000000000000000000000000000000000000000000000000000069988500000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d00000000000000000000000000000000000000000000000000000000000000144b6174616e61204e6574776f726b20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000000034b41540000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610234575f3560e01c806370a0823111610135578063c23e9707116100b4578063dd62ed3e11610079578063dd62ed3e146104ee578063e4a063c314610526578063ed3de2e31461052f578063f8205ebb14610543578063fdb04bbf14610556575f5ffd5b8063c23e9707146104aa578063c373fee3146104b3578063cf309012146104bb578063d18ced1d146104c8578063d505accf146104db575f5ffd5b8063866558e9116100fa578063866558e914610440578063886eaddc1461045f5780639286c9311461046757806395d89b411461048f578063a9059cbb14610497575f5ffd5b806370a08231146103bb57806378150ff8146103e35780637ecebe001461040a5780638380edb71461041d57806384b0196e14610425575f5ffd5b8063343b3cde116101c157806340c10f191161018657806340c10f191461037057806344dd936c146103835780634d3591ec1461038c5780634e5a7680146103a05780635cfd8a65146103a8575f5ffd5b8063343b3cde14610305578063355274ea146103455780633644e5151461034d57806336fc1787146103555780633f5090ee14610368575f5ffd5b80631fe2256b116102075780631fe2256b1461029557806323b872dd146102a9578063251c1aa3146102bc5780632b911eaf146102e3578063313ce567146102f6575f5ffd5b806306fdde0314610238578063095ea7b31461025657806318160ddd146102795780631bf544431461028b575b5f5ffd5b610240610565565b60405161024d91906123d1565b60405180910390f35b610269610264366004612405565b6105f5565b604051901515815260200161024d565b6002545b60405190815260200161024d565b61029361060e565b005b61027d5f5160206127c25f395f51905f5281565b6102696102b736600461242d565b610715565b61027d7f000000000000000000000000000000000000000000000000000000006998850081565b6102936102f1366004612467565b610738565b6040516012815260200161024d565b61032d6103133660046124a0565b60086020525f90815260409020546001600160a01b031681565b6040516001600160a01b03909116815260200161024d565b61027d6107c3565b61027d6107de565b6102936103633660046124a0565b6107e7565b6102936108a1565b61029361037e366004612405565b6109a3565b61027d600a5481565b61027d5f5160206127a25f395f51905f5281565b610293610a2f565b6102936103b63660046124a0565b610c47565b61027d6103c93660046124b7565b6001600160a01b03165f9081526020819052604090205490565b61027d7f54c9b4c80715cee47dde7f1b62b0c6cd06cacb92458efa077def5f27d03415d481565b61027d6104183660046124b7565b610dab565b610269610dc8565b61042d610dfd565b60405161024d97969594939291906124d0565b61027d61044e3660046124b7565b600d6020525f908152604090205481565b610293610e3f565b61032d6104753660046124a0565b60096020525f90815260409020546001600160a01b031681565b610240610f66565b6102696104a5366004612405565b610f75565b61027d600b5481565b610293610f82565b600e546102699060ff1681565b6102936104d6366004612405565b61104e565b6102936104e9366004612566565b6110e5565b61027d6104fc3660046125d3565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61027d600c5481565b61027d5f5160206127625f395f51905f5281565b610293610551366004612405565b61121b565b61027d6733ea71cbbb42b10481565b60606003805461057490612604565b80601f01602080910402602001604051908101604052809291908181526020018280546105a090612604565b80156105eb5780601f106105c2576101008083540402835291602001916105eb565b820191905f5260205f20905b8154815290600101906020018083116105ce57829003601f168201915b5050505050905090565b5f33610602818585611357565b60019150505b92915050565b5f5160206127c25f395f51905f525f81905260086020527fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c546001600160a01b031633146106775760405162461bcd60e51b815260040161066e9061263c565b60405180910390fd5b5f5160206127c25f395f51905f525f8181527fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c80546001600160a01b0319908116909155600960209081527f2cfeb242b3e2a551873efb7f5409af68ae82192c4daa647b798f6ffd68dbdbeb805490921690915560408051928352908201929092525f5160206127825f395f51905f5291015b60405180910390a150565b5f33610722858285611369565b61072d8585856113e4565b506001949350505050565b5f5160206127c25f395f51905f525f81905260086020527fad46a584c12dee19dd3315865dd8f658321644e2fc0d8ec87376d55e731dfd9c546001600160a01b031633146107985760405162461bcd60e51b815260040161066e9061263c565b506001600160a01b03919091165f908152600f60205260409020805460ff1916911515919091179055565b5f6107cc611441565b600a546107d9919061267a565b905090565b5f6107d96114c3565b5f818152600960205260409020546001600160a01b031633146108435760405162461bcd60e51b81526020600482015260146024820152732737ba103732bb903937b632903437b63232b91760611b604482015260640161066e565b5f8181526009602090815260408083208054600884529382902080546001600160a01b039586166001600160a01b0319918216178255825416909155548151931683529082018390525f5160206127825f395f51905f52910161070a565b5f5160206127a25f395f51905f525f81905260086020525f5160206127425f395f51905f52546001600160a01b031633146108ee5760405162461bcd60e51b815260040161066e9061263c565b5f5160206127a25f395f51905f525f5260096020527ff20486fe1a2a0fc5e4d4f4bd2ea802b01028bd0d3680182b6ac378d9234898a7546001600160a01b03161561094b5760405162461bcd60e51b815260040161066e9061268d565b5f5160206127a25f395f51905f525f818152600860209081525f5160206127425f395f51905f5280546001600160a01b031916905560408051928352908201929092525f5160206127825f395f51905f52910161070a565b335f908152600d60205260409020548111156109fd5760405162461bcd60e51b81526020600482015260196024820152782737ba1032b737bab3b41036b4b73a1031b0b830b1b4ba3c9760391b604482015260640161066e565b335f908152600d602052604081208054839290610a1b9084906126c4565b90915550610a2b905082826115ec565b5050565b5f5160206127625f395f51905f525f81905260086020525f5160206127225f395f51905f52546001600160a01b03163314610a7c5760405162461bcd60e51b815260040161066e9061263c565b5f5160206127625f395f51905f525f5260096020527f3f9d107ab11d3fd2cdd10e4d1851944c81a2523e5341fb140b585ded940719bf546001600160a01b031615610ad95760405162461bcd60e51b815260040161066e9061268d565b600c5415610b1f5760405162461bcd60e51b815260206004820152601360248201527224b7333630ba34b7b7103737ba103d32b9379760691b604482015260640161066e565b5f5160206127a25f395f51905f525f5260086020525f5160206127425f395f51905f52546001600160a01b031615610b925760405162461bcd60e51b815260206004820152601660248201527524b7333630ba34b7b71030b236b4b7103737ba10181760511b604482015260640161066e565b5f5160206127a25f395f51905f525f5260096020527ff20486fe1a2a0fc5e4d4f4bd2ea802b01028bd0d3680182b6ac378d9234898a7546001600160a01b031615610bef5760405162461bcd60e51b815260040161066e9061268d565b5f5160206127625f395f51905f525f818152600860209081525f5160206127225f395f51905f5280546001600160a01b031916905560408051928352908201929092525f5160206127825f395f51905f52910161070a565b5f5160206127a25f395f51905f525f81905260086020525f5160206127425f395f51905f52546001600160a01b03163314610c945760405162461bcd60e51b815260040161066e9061263c565b5f5160206127625f395f51905f525f5260086020525f5160206127225f395f51905f52546001600160a01b0316610d0d5760405162461bcd60e51b815260206004820152601960248201527f4e6f20696e666c6174696f6e2062656e65666963696172792e00000000000000604482015260640161066e565b6733ea71cbbb42b104821115610d5c5760405162461bcd60e51b815260206004820152601460248201527324b7333630ba34b7b7103a37b7903630b933b29760611b604482015260640161066e565b610d64610f82565b600c80549083905560408051828152602081018590527f0c347accb94360b551ed917758bc5358525405e1b91ac5407913b81d4c3e86b691015b60405180910390a1505050565b6001600160a01b0381165f90815260076020526040812054610608565b5f7f00000000000000000000000000000000000000000000000000000000699885004211806107d9575050600e5460ff161590565b5f6060805f5f5f6060610e0e611620565b610e1661164d565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b7f54c9b4c80715cee47dde7f1b62b0c6cd06cacb92458efa077def5f27d03415d45f81905260086020527ffe18803ae90e6065a13f80d13c726a612a5f4bde35c678d0a6892ebcb7910d75546001600160a01b03163314610eb25760405162461bcd60e51b815260040161066e9061263c565b600e805460ff191690557f54c9b4c80715cee47dde7f1b62b0c6cd06cacb92458efa077def5f27d03415d45f8181527ffe18803ae90e6065a13f80d13c726a612a5f4bde35c678d0a6892ebcb7910d7580546001600160a01b0319908116909155600960209081527ffe4fa762c7c70a39e2a3cadfc51d39dffde606fcc63dc244c53ce43f7dbb091a805490921690915560408051928352908201929092525f5160206127825f395f51905f52910161070a565b60606004805461057490612604565b5f336106028185856113e4565b5f610f8b611441565b5f5160206127625f395f51905f525f90815260086020525f5160206127225f395f51905f5254600a80549394506001600160a01b0390911692849290610fd290849061267a565b90915550506001600160a01b0381165f908152600d602052604081208054849290610ffe90849061267a565b909155505042600b55604080516001600160a01b0383168152602081018490527f853d3d7e29278422c75860e77aff784c6587d84b19d0e212f562b91f60b3390f91015b60405180910390a15050565b5f8181526008602052604090205481906001600160a01b031633146110855760405162461bcd60e51b815260040161066e9061263c565b5f8281526009602090815260409182902080546001600160a01b0319166001600160a01b03871690811790915582519081529081018490527fe925262108dd98ff133f1ba628eb25c76de057168ddd49910ab8eaba84b792fe9101610d9e565b834211156111095760405163313c898160e11b81526004810185905260240161066e565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886111548c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f6111ae8261167a565b90505f6111bd828787876116a6565b9050896001600160a01b0316816001600160a01b031614611204576040516325c0072360e11b81526001600160a01b0380831660048301528b16602482015260440161066e565b61120f8a8a8a611357565b50505050505050505050565b6001600160a01b0382166112685760405162461bcd60e51b815260206004820152601460248201527353656e64696e6720746f2030206164647265737360601b604482015260640161066e565b335f908152600d60205260409020548111156112c25760405162461bcd60e51b81526020600482015260196024820152782737ba1032b737bab3b41036b4b73a1031b0b830b1b4ba3c9760391b604482015260640161066e565b335f908152600d6020526040812080548392906112e09084906126c4565b90915550506001600160a01b0382165f908152600d60205260408120805483929061130c90849061267a565b9091555050604080513381526001600160a01b03841660208201529081018290527f447b0379ed6803974a36a2a794fced1ee7777a67630a29f50f88924f80876a0490606001611042565b61136483838360016116d2565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981146113de57818110156113d057604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161066e565b6113de84848484035f6116d2565b50505050565b6001600160a01b03831661140d57604051634b637e8f60e11b81525f600482015260240161066e565b6001600160a01b0382166114365760405163ec442f0560e01b81525f600482015260240161066e565b6113648383836117a4565b5f42600b540361145057505f90565b5f600b544261145f91906126c4565b90505f6114876301e1338083600c5461147891906126d7565b61148291906126ee565b611875565b90505f670de0b6b3a7640000600a54836114a191906126d7565b6114ab91906126ee565b9050600a54816114bb91906126c4565b935050505090565b5f306001600160a01b037f000000000000000000000000083d83d65413092608e848aaffd34b5c4335ef091614801561151b57507f00000000000000000000000000000000000000000000000000000000000b67d246145b1561154557507f22fefc4aee7b4c56bdaa46dafbc1cec2a1b28495abc9312026edf1a24bd7a3de90565b6107d9604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f610cde522034964b05f04b95ac60af4ecd899f69517e2104d5ab57264d1ffec9918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6001600160a01b0382166116155760405163ec442f0560e01b81525f600482015260240161066e565b610a2b5f83836117a4565b60606107d97f4b6174616e61204e6574776f726b20546f6b656e0000000000000000000000146005611ff0565b60606107d97f31000000000000000000000000000000000000000000000000000000000000016006611ff0565b5f6106086116866114c3565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f6116b688888888612099565b9250925092506116c68282612161565b50909695505050505050565b6001600160a01b0384166116fb5760405163e602df0560e01b81525f600482015260240161066e565b6001600160a01b03831661172457604051634a1406b160e11b81525f600482015260240161066e565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156113de57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161179691815260200190565b60405180910390a350505050565b7f00000000000000000000000000000000000000000000000000000000699885004211806117d55750600e5460ff16155b156117e557611364838383612219565b6001600160a01b0383165f908152600f602052604090205460ff16801561181457506001600160a01b03831633145b1561182457611364838383612219565b6001600160a01b03831661183d57611364838383612219565b60405162461bcd60e51b815260206004820152600d60248201526c2a37b5b2b7103637b1b5b2b21760991b604482015260640161066e565b5f61188c670de0b6b3a7640000604084901b6126ee565b9150600160bf1b905067ff0000000000000082161561199d576780000000000000008216156118c45768016a09e667f3bcc9090260401c5b6740000000000000008216156118e3576801306fe0a31b7152df0260401c5b672000000000000000821615611902576801172b83c7d517adce0260401c5b6710000000000000008216156119215768010b5586cf9890f62a0260401c5b670800000000000000821615611940576801059b0d31585743ae0260401c5b67040000000000000082161561195f57680102c9a3e778060ee70260401c5b67020000000000000082161561197e5768010163da9fb33356d80260401c5b67010000000000000082161561199d57680100b1afa5abcbed610260401c5b66ff000000000000821615611a9c5766800000000000008216156119ca5768010058c86da1c09ea20260401c5b66400000000000008216156119e8576801002c605e2e8cec500260401c5b6620000000000000821615611a0657680100162f3904051fa10260401c5b6610000000000000821615611a24576801000b175effdc76ba0260401c5b6608000000000000821615611a4257680100058ba01fb9f96d0260401c5b6604000000000000821615611a605768010002c5cc37da94920260401c5b6602000000000000821615611a7e576801000162e525ee05470260401c5b6601000000000000821615611a9c5768010000b17255775c040260401c5b65ff0000000000821615611b925765800000000000821615611ac7576801000058b91b5bc9ae0260401c5b65400000000000821615611ae457680100002c5c89d5ec6d0260401c5b65200000000000821615611b015768010000162e43f4f8310260401c5b65100000000000821615611b1e57680100000b1721bcfc9a0260401c5b65080000000000821615611b3b5768010000058b90cf1e6e0260401c5b65040000000000821615611b58576801000002c5c863b73f0260401c5b65020000000000821615611b7557680100000162e430e5a20260401c5b65010000000000821615611b92576801000000b1721835510260401c5b64ff00000000821615611c7f57648000000000821615611bbb57680100000058b90c0b490260401c5b644000000000821615611bd75768010000002c5c8601cc0260401c5b642000000000821615611bf3576801000000162e42fff00260401c5b641000000000821615611c0f5768010000000b17217fbb0260401c5b640800000000821615611c2b576801000000058b90bfce0260401c5b640400000000821615611c4757680100000002c5c85fe30260401c5b640200000000821615611c635768010000000162e42ff10260401c5b640100000000821615611c7f57680100000000b17217f80260401c5b63ff000000821615611d63576380000000821615611ca65768010000000058b90bfc0260401c5b6340000000821615611cc1576801000000002c5c85fe0260401c5b6320000000821615611cdc57680100000000162e42ff0260401c5b6310000000821615611cf7576801000000000b17217f0260401c5b6308000000821615611d1257680100000000058b90c00260401c5b6304000000821615611d2d5768010000000002c5c8600260401c5b6302000000821615611d48576801000000000162e4300260401c5b6301000000821615611d635768010000000000b172180260401c5b62ff0000821615611e3e5762800000821615611d88576801000000000058b90c0260401c5b62400000821615611da257680100000000002c5c860260401c5b62200000821615611dbc5768010000000000162e430260401c5b62100000821615611dd657680100000000000b17210260401c5b62080000821615611df05768010000000000058b910260401c5b62040000821615611e0a576801000000000002c5c80260401c5b62020000821615611e2457680100000000000162e40260401c5b62010000821615611e3e576801000000000000b1720260401c5b61ff00821615611f1057618000821615611e6157680100000000000058b90260401c5b614000821615611e7a5768010000000000002c5d0260401c5b612000821615611e93576801000000000000162e0260401c5b611000821615611eac5768010000000000000b170260401c5b610800821615611ec5576801000000000000058c0260401c5b610400821615611ede57680100000000000002c60260401c5b610200821615611ef757680100000000000001630260401c5b610100821615611f1057680100000000000000b10260401c5b60ff821615611fd9576080821615611f3157680100000000000000590260401c5b6040821615611f49576801000000000000002c0260401c5b6020821615611f6157680100000000000000160260401c5b6010821615611f79576801000000000000000b0260401c5b6008821615611f9157680100000000000000060260401c5b6004821615611fa957680100000000000000030260401c5b6002821615611fc157680100000000000000010260401c5b6001821615611fd957680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b606060ff831461200a576120038361233f565b9050610608565b81805461201690612604565b80601f016020809104026020016040519081016040528092919081815260200182805461204290612604565b801561208d5780601f106120645761010080835404028352916020019161208d565b820191905f5260205f20905b81548152906001019060200180831161207057829003601f168201915b50505050509050610608565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156120d257505f91506003905082612157565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015612123573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661214e57505f925060019150829050612157565b92505f91508190505b9450945094915050565b5f8260038111156121745761217461270d565b0361217d575050565b60018260038111156121915761219161270d565b036121af5760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156121c3576121c361270d565b036121e45760405163fce698f760e01b81526004810182905260240161066e565b60038260038111156121f8576121f861270d565b03610a2b576040516335e2f38360e21b81526004810182905260240161066e565b6001600160a01b038316612243578060025f828254612238919061267a565b909155506122b39050565b6001600160a01b0383165f90815260208190526040902054818110156122955760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640161066e565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166122cf576002805482900390556122ed565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161233291815260200190565b60405180910390a3505050565b60605f61234b8361237c565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f81111561060857604051632cd44ac360e21b815260040160405180910390fd5b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6123e360208301846123a3565b9392505050565b80356001600160a01b0381168114612400575f5ffd5b919050565b5f5f60408385031215612416575f5ffd5b61241f836123ea565b946020939093013593505050565b5f5f5f6060848603121561243f575f5ffd5b612448846123ea565b9250612456602085016123ea565b929592945050506040919091013590565b5f5f60408385031215612478575f5ffd5b612481836123ea565b915060208301358015158114612495575f5ffd5b809150509250929050565b5f602082840312156124b0575f5ffd5b5035919050565b5f602082840312156124c7575f5ffd5b6123e3826123ea565b60ff60f81b8816815260e060208201525f6124ee60e08301896123a3565b828103604084015261250081896123a3565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015612555578351835260209384019390920191600101612537565b50909b9a5050505050505050505050565b5f5f5f5f5f5f5f60e0888a03121561257c575f5ffd5b612585886123ea565b9650612593602089016123ea565b95506040880135945060608801359350608088013560ff811681146125b6575f5ffd5b9699959850939692959460a0840135945060c09093013592915050565b5f5f604083850312156125e4575f5ffd5b6125ed836123ea565b91506125fb602084016123ea565b90509250929050565b600181811c9082168061261857607f821691505b60208210810361263657634e487b7160e01b5f52602260045260245ffd5b50919050565b60208082526010908201526f2737ba103937b632903437b63232b91760811b604082015260600190565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561060857610608612666565b6020808252601a908201527f526f6c65207472616e7366657220696e2070726f67726573732e000000000000604082015260600190565b8181038181111561060857610608612666565b808202811582820484141761060857610608612666565b5f8261270857634e487b7160e01b5f52601260045260245ffd5b500490565b634e487b7160e01b5f52602160045260245ffdfeef99cce924c96d8dbe2300db77854d44fa213667cf26fababda543a2fa80b5c9b521cc951ed9755340601b8a7f63a0bd6c89110fdd21850902bb60ab4fc3f7b00ec560a57e72e1ad7c888fa95b5a74170e915e2173a447b50c3cefd1fe82f510f54f5cceb448ef806753e004d4516a584e5d52ee04e57717762f87bd2cce6e9bf8541c194a0b2749cdcc163377d32fae37700c72cef0857ad24aa49792741b2ef8bea3b6ac1f7ecd96cf424727980e36f4569781fe0559ce9088bb153106d262a2646970667358221220d20e3e7bea2138b4be8bc580553b4d96090aa3d650e080302cea4e34031b0e6764736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d0000000000000000000000000000000000000000000000000000000069988500000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d00000000000000000000000000000000000000000000000000000000000000144b6174616e61204e6574776f726b20546f6b656e00000000000000000000000000000000000000000000000000000000000000000000000000000000000000034b41540000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _name (string): Katana Network Token
Arg [1] : _symbol (string): KAT
Arg [2] : _inflationAdmin (address): 0xF55FAf635932AFc3eb949BE418268837b44C2c2D
Arg [3] : _inflationBeneficiary (address): 0xF55FAf635932AFc3eb949BE418268837b44C2c2D
Arg [4] : _distributor (address): 0xF55FAf635932AFc3eb949BE418268837b44C2c2D
Arg [5] : _unlockTime (uint256): 1771603200
Arg [6] : _unlocker (address): 0xF55FAf635932AFc3eb949BE418268837b44C2c2D
Arg [7] : _lockExemptionAdmin (address): 0xF55FAf635932AFc3eb949BE418268837b44C2c2D
-----Encoded View---------------
12 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [2] : 000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d
Arg [3] : 000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d
Arg [4] : 000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d
Arg [5] : 0000000000000000000000000000000000000000000000000000000069988500
Arg [6] : 000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d
Arg [7] : 000000000000000000000000f55faf635932afc3eb949be418268837b44c2c2d
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000014
Arg [9] : 4b6174616e61204e6574776f726b20546f6b656e000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [11] : 4b41540000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.