ETH Price: $3,037.86 (+0.52%)

Contract

0x8236a87084f8B84306f72007F36F2618A5634494

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Consortium

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

import {Ownable2StepUpgradeable} from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {Actions} from "../libs/Actions.sol";
import {INotaryConsortium} from "./INotaryConsortium.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

/// @title The contract utilizes consortium governance functions using multisignature verification
/// @author Lombard.Finance
/// @notice The contracts are a part of the Lombard.Finance protocol
contract Consortium is Ownable2StepUpgradeable, INotaryConsortium {
    struct ValidatorSet {
        /// @notice addresses of the signers
        address[] validators;
        /// @notice weight of each signer
        uint256[] weights;
        /// @notice current threshold for signatures weight to be accepted
        uint256 weightThreshold;
    }
    /// @custom:storage-location erc7201:lombardfinance.storage.Consortium
    struct ConsortiumStorage {
        /// @notice Current epoch
        uint256 epoch;
        /// @notice Store the Validator set for each epoch
        mapping(uint256 => ValidatorSet) validatorSet;
    }

    // keccak256(abi.encode(uint256(keccak256("lombardfinance.storage.Consortium")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant CONSORTIUM_STORAGE_LOCATION =
        0xbac09a3ab0e06910f94a49c10c16eb53146536ec1a9e948951735cde3a58b500;

    /// @dev https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @notice Initializes the consortium contract
    /// @param _owner - The address of the initial owner
    function initialize(address _owner) external initializer {
        __Ownable_init(_owner);
        __Ownable2Step_init();
        __Consortium_init();
    }

    /// ONLY OWNER FUNCTIONS ///

    /// @notice Sets the initial validator set from any epoch
    /// @param _initialValSet - The initial list of validators
    function setInitialValidatorSet(
        bytes calldata _initialValSet
    ) external onlyOwner {
        // Payload validation
        if (bytes4(_initialValSet) != Actions.NEW_VALSET)
            revert UnexpectedAction(bytes4(_initialValSet));

        ConsortiumStorage storage $ = _getConsortiumStorage();

        Actions.ValSetAction memory action = Actions.validateValSet(
            _initialValSet[4:]
        );

        if ($.epoch != 0) {
            revert ValSetAlreadySet();
        }

        _setValidatorSet(
            $,
            action.validators,
            action.weights,
            action.weightThreshold,
            action.epoch
        );
    }

    /// USER ACTIONS ///

    /// @notice Validates the provided signature against the given hash
    /// @param _payloadHash the hash of the data to be signed
    /// @param _proof nonce, expiry and signatures to validate
    function checkProof(
        bytes32 _payloadHash,
        bytes calldata _proof
    ) public view override {
        _checkProof(_payloadHash, _proof);
    }

    function setNextValidatorSet(
        bytes calldata payload,
        bytes calldata proof
    ) external {
        // payload validation
        if (bytes4(payload) != Actions.NEW_VALSET) {
            revert UnexpectedAction(bytes4(payload));
        }
        Actions.ValSetAction memory action = Actions.validateValSet(
            payload[4:]
        );

        ConsortiumStorage storage $ = _getConsortiumStorage();

        // check proof
        bytes32 payloadHash = sha256(payload);
        checkProof(payloadHash, proof);

        if (action.epoch != $.epoch + 1) revert InvalidEpoch();

        _setValidatorSet(
            $,
            action.validators,
            action.weights,
            action.weightThreshold,
            action.epoch
        );
    }

    /// GETTERS ///

    /// @notice Returns the validator for a given epoch
    /// @param epoch the epoch to get the threshold for
    function getValidatorSet(
        uint256 epoch
    ) external view returns (ValidatorSet memory) {
        return _getConsortiumStorage().validatorSet[epoch];
    }

    /// @notice Returns the current epoch
    function curEpoch() external view returns (uint256) {
        return _getConsortiumStorage().epoch;
    }

    /// PRIVATE FUNCTIONS ///

    /// @notice Internal initializer for the consortium
    function __Consortium_init() internal onlyInitializing {}

    function _setValidatorSet(
        ConsortiumStorage storage $,
        address[] memory _validators,
        uint256[] memory _weights,
        uint256 _threshold,
        uint256 _epoch
    ) internal {
        // do not allow to rewrite existing valset
        if ($.validatorSet[_epoch].weightThreshold != 0) {
            revert InvalidEpoch();
        }

        $.epoch = _epoch;
        $.validatorSet[_epoch] = ValidatorSet({
            validators: _validators,
            weights: _weights,
            weightThreshold: _threshold
        });
        emit ValidatorSetUpdated(_epoch, _validators, _weights, _threshold);
    }

    /// @dev Checks that `_proof` is correct
    /// @param _payloadHash data to be signed
    /// @param _proof encoding of signatures array
    /// @dev Negative weight means that the validator did not sign, any positive weight means that the validator signed
    function _checkProof(
        bytes32 _payloadHash,
        bytes calldata _proof
    ) internal view virtual {
        ConsortiumStorage storage $ = _getConsortiumStorage();
        if ($.epoch == 0) {
            revert NoValidatorSet();
        }
        // decode proof
        bytes[] memory signatures = abi.decode(_proof, (bytes[]));

        address[] storage validators = $.validatorSet[$.epoch].validators;
        uint256 length = validators.length;
        if (signatures.length != length) {
            revert LengthMismatch();
        }

        uint256 weight = 0;
        uint256[] storage weights = $.validatorSet[$.epoch].weights;
        for (uint256 i; i < length; ++i) {
            // each signature preset R || S values
            // V is missed, because validators use Cosmos SDK keyring which is not signing in eth style
            // We only check signatures which are the expected 64 bytes long - we are expecting
            // a signatures array with the same amount of items as there are validators, but not all
            // validators will need to sign for a proof to be valid, so validators who have not signed
            // will have their corresponding signature set to 0 bytes.
            // In case of a malformed signature (i.e. length isn't 0 bytes but also isn't 64 bytes)
            // this signature will be discarded.
            if (signatures[i].length == 64) {
                // split signature by R and S values
                bytes memory sig = signatures[i];
                bytes32 r;
                bytes32 s;

                // load the first 32 bytes (r) and the second 32 bytes (s) from the sig
                assembly {
                    r := mload(add(sig, 0x20)) // first 32 bytes (offset 0x20)
                    s := mload(add(sig, 0x40)) // next 32 bytes (offset 0x40)
                }

                if (r != bytes32(0) && s != bytes32(0)) {
                    // try recover with V = 27
                    (address signer, ECDSA.RecoverError err, ) = ECDSA
                        .tryRecover(_payloadHash, 27, r, s);

                    // ignore if bad signature
                    if (err != ECDSA.RecoverError.NoError) {
                        continue;
                    }

                    // if signer doesn't match try V = 28
                    if (signer != validators[i]) {
                        (signer, err, ) = ECDSA.tryRecover(
                            _payloadHash,
                            28,
                            r,
                            s
                        );
                        if (err != ECDSA.RecoverError.NoError) {
                            continue;
                        }

                        if (signer != validators[i]) {
                            continue;
                        }
                    }
                    // signature accepted

                    unchecked {
                        weight += weights[i];
                    }
                }
            }
        }
        if (weight < $.validatorSet[$.epoch].weightThreshold) {
            revert NotEnoughSignatures();
        }
    }

    /// @notice Retrieve the ConsortiumStorage struct from the specific storage slot
    function _getConsortiumStorage()
        private
        pure
        returns (ConsortiumStorage storage $)
    {
        assembly {
            $.slot := CONSORTIUM_STORAGE_LOCATION
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
    struct Ownable2StepStorage {
        address _pendingOwner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;

    function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
        assembly {
            $.slot := Ownable2StepStorageLocation
        }
    }

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    function __Ownable2Step_init() internal onlyInitializing {
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        return $._pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        $._pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        delete $._pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 11 of 12 : INotaryConsortium.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

interface INotaryConsortium {
    /// @dev Error thrown when signature payload is already used
    error PayloadAlreadyUsed();

    /// @dev Error thrown when signatures length is not equal to signers length
    error LengthMismatch();

    /// @dev Error thrown when there are not enough signatures
    error NotEnoughSignatures();

    /// @dev Error thrown when unexpected action is used
    error UnexpectedAction(bytes4 action);

    /// @dev Event emitted when the validator set is updated
    event ValidatorSetUpdated(
        uint256 indexed epoch,
        address[] validators,
        uint256[] weights,
        uint256 threshold
    );

    /// @dev Error thrown when validator set already set
    error ValSetAlreadySet();

    /// @dev Error thrown when no validator set is set
    error NoValidatorSet();

    /// @dev Error thrown when invalid epoch is provided
    error InvalidEpoch();

    function checkProof(
        bytes32 _payloadHash,
        bytes calldata _proof
    ) external view;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

library Actions {
    struct DepositBtcActionV0 {
        uint256 toChain;
        address recipient;
        uint256 amount;
        bytes32 txid;
        uint32 vout;
    }

    struct DepositBtcActionV1 {
        uint256 toChain;
        address recipient;
        uint256 amount;
        bytes32 txid;
        uint32 vout;
        address tokenAddress;
    }

    struct DepositBridgeAction {
        uint256 fromChain;
        bytes32 fromContract;
        uint256 toChain;
        address toContract;
        address recipient;
        uint64 amount;
        uint256 nonce;
    }

    struct ValSetAction {
        uint256 epoch;
        address[] validators;
        uint256[] weights;
        uint256 weightThreshold;
        uint256 height;
    }

    struct FeeApprovalAction {
        uint256 fee;
        uint256 expiry;
    }

    /// @dev Error thrown when invalid public key is provided
    error InvalidPublicKey(bytes pubKey);

    /// @dev Error thrown when signatures length is not equal to signers length
    error Actions_LengthMismatch();

    /// @dev Error thrown when threshold is invalid
    error InvalidThreshold();

    /// @dev Error thrown when validator set size is invalid
    error InvalidValidatorSetSize();

    /// @dev Error thrown when zero validator is provided
    error ZeroValidator();

    /// @dev Error thrown when wrong chain id is provided
    error WrongChainId();

    /// @dev Error thrown when wrong contract is provided
    error WrongContract();

    /// @dev Error thrown when zero address is provided
    error Actions_ZeroAddress();

    /// @dev Error thrown when zero amount is provided
    error ZeroAmount();

    /// @dev Error thrown when zero weight is provided
    error ZeroWeight();

    /// @dev Error thrown when fee approval is expired
    error UserSignatureExpired(uint256 expiry);

    /// @dev Error thrown when amount is below fee
    error NotEnoughAmountToUseApproval();

    /// @dev Error thrown when zero fee is used
    error ZeroFee();

    /// @dev Error thrown when payload length is too big
    error InvalidPayloadSize(uint256 expected, uint256 actual);

    // bytes4(keccak256("feeApproval(uint256,uint256)"))
    bytes4 internal constant FEE_APPROVAL_ACTION = 0x8175ca94;
    // keccak256("feeApproval(uint256 chainId,uint256 fee,uint256 expiry)")
    bytes32 internal constant FEE_APPROVAL_EIP712_ACTION =
        0x40ac9f6aa27075e64c1ed1ea2e831b20b8c25efdeb6b79fd0cf683c9a9c50725;
    // bytes4(keccak256("payload(bytes32,bytes32,uint64,bytes32,uint32)"))
    bytes4 internal constant DEPOSIT_BTC_ACTION_V0 = 0xf2e73f7c;
    // bytes4(keccak256("payload(bytes32,bytes32,uint64,bytes32,uint32,bytes32)"))
    bytes4 internal constant DEPOSIT_BTC_ACTION_V1 = 0xce25e7c2;
    // bytes4(keccak256("payload(bytes32,bytes32,bytes32,bytes32,bytes32,uint64,uint256)"))
    bytes4 internal constant DEPOSIT_BRIDGE_ACTION = 0x5c70a505;
    // bytes4(keccak256("payload(uint256,bytes[],uint256[],uint256,uint256)"))
    bytes4 internal constant NEW_VALSET = 0x4aab1d6f;

    /// @dev Maximum number of validators allowed in the consortium.
    /// @notice This value is determined by the minimum of CometBFT consensus limitations and gas considerations:
    /// - CometBFT has a hard limit of 10,000 validators (https://docs.cometbft.com/v0.38/spec/core/state)
    /// - Gas-based calculation:
    ///   - Assumes 4281 gas per ECDSA signature verification
    ///   - Uses a conservative 30 million gas block limit
    ///   - Maximum possible signatures: 30,000,000 / 4,281 ≈ 7007
    ///   - Reverse calculated for BFT consensus (2/3 + 1):
    ///     7,007 = (10,509 * 2/3 + 1) rounded down
    /// - The lower value of 10,000 (CometBFT limit) and 10,509 (gas calculation) is chosen
    /// @dev This limit ensures compatibility with CometBFT while also considering gas limitations
    ///      for signature verification within a single block.
    uint256 private constant MAX_VALIDATOR_SET_SIZE = 102;

    /// @dev Minimum number of validators allowed in the system.
    /// @notice While set to 1 to allow for non-distributed scenarios, this configuration
    /// does not provide Byzantine fault tolerance. For a truly distributed and
    /// fault-tolerant system, a minimum of 4 validators would be recommended to tolerate
    /// at least one Byzantine fault.
    uint256 private constant MIN_VALIDATOR_SET_SIZE = 1;

    /// @dev A constant representing the number of bytes for a slot of information in a payload.
    uint256 internal constant ABI_SLOT_SIZE = 32;

    /**
     * @notice Returns decoded deposit btc msg v0
     * @dev Message should not contain the selector
     * @param payload Body of the mint payload
     */
    function depositBtcV0(
        bytes memory payload
    ) internal view returns (DepositBtcActionV0 memory) {
        if (payload.length != ABI_SLOT_SIZE * 5)
            revert InvalidPayloadSize(ABI_SLOT_SIZE * 5, payload.length);

        (
            uint256 toChain,
            address recipient,
            uint256 amount,
            bytes32 txid,
            uint32 vout
        ) = abi.decode(payload, (uint256, address, uint256, bytes32, uint32));

        if (toChain != block.chainid) {
            revert WrongChainId();
        }
        if (recipient == address(0)) {
            revert Actions_ZeroAddress();
        }
        if (amount == 0) {
            revert ZeroAmount();
        }

        return DepositBtcActionV0(toChain, recipient, amount, txid, vout);
    }

    /**
     * @notice Returns decoded deposit btc msg v1
     * @dev Message should not contain the selector
     * @param payload Body of the mint payload
     */
    function depositBtcV1(
        bytes memory payload
    ) internal view returns (DepositBtcActionV1 memory) {
        if (payload.length != ABI_SLOT_SIZE * 6)
            revert InvalidPayloadSize(ABI_SLOT_SIZE * 6, payload.length);

        (
            uint256 toChain,
            address recipient,
            uint256 amount,
            bytes32 txid,
            uint32 vout,
            address tokenAddress
        ) = abi.decode(
                payload,
                (uint256, address, uint256, bytes32, uint32, address)
            );

        if (toChain != block.chainid) {
            revert WrongChainId();
        }
        if (recipient == address(0)) {
            revert Actions_ZeroAddress();
        }
        if (amount == 0) {
            revert ZeroAmount();
        }

        return
            DepositBtcActionV1(
                toChain,
                recipient,
                amount,
                txid,
                vout,
                tokenAddress
            );
    }

    /**
     * @notice Returns decoded bridge payload
     * @dev Payload should not contain the selector
     * @param payload Body of the burn payload
     */
    function depositBridge(
        bytes memory payload
    ) internal view returns (DepositBridgeAction memory) {
        if (payload.length != ABI_SLOT_SIZE * 7)
            revert InvalidPayloadSize(ABI_SLOT_SIZE * 7, payload.length);

        (
            uint256 fromChain,
            bytes32 fromContract,
            uint256 toChain,
            address toContract,
            address recipient,
            uint64 amount,
            uint256 nonce
        ) = abi.decode(
                payload,
                (uint256, bytes32, uint256, address, address, uint64, uint256)
            );

        if (toChain != block.chainid) {
            revert WrongChainId();
        }
        if (recipient == address(0)) {
            revert Actions_ZeroAddress();
        }
        if (amount == 0) {
            revert ZeroAmount();
        }

        return
            DepositBridgeAction(
                fromChain,
                fromContract,
                toChain,
                toContract,
                recipient,
                amount,
                nonce
            );
    }

    /**
     * @notice Returns decoded validator set
     * @dev Payload should not contain the selector
     * @param payload Body of the set validators set payload
     */
    function validateValSet(
        bytes memory payload
    ) internal pure returns (ValSetAction memory) {
        (
            uint256 epoch,
            bytes[] memory pubKeys,
            uint256[] memory weights,
            uint256 weightThreshold,
            uint256 height
        ) = abi.decode(
                payload,
                (uint256, bytes[], uint256[], uint256, uint256)
            );

        // Since dynamic arrays can variably insert more slots of data for things such as data length,
        // offset etc., we will just encode the received variables again and check for a length match.
        bytes memory reEncodedPayload = abi.encode(
            epoch,
            pubKeys,
            weights,
            weightThreshold,
            height
        );
        if (reEncodedPayload.length != payload.length)
            revert InvalidPayloadSize(payload.length, reEncodedPayload.length);

        if (
            pubKeys.length < MIN_VALIDATOR_SET_SIZE ||
            pubKeys.length > MAX_VALIDATOR_SET_SIZE
        ) revert InvalidValidatorSetSize();

        if (pubKeys.length != weights.length) revert Actions_LengthMismatch();

        if (weightThreshold == 0) revert InvalidThreshold();

        uint256 sum = 0;
        for (uint256 i; i < weights.length; ) {
            if (weights[i] == 0) {
                revert ZeroWeight();
            }
            sum += weights[i];
            unchecked {
                ++i;
            }
        }
        if (sum < weightThreshold) revert InvalidThreshold();

        address[] memory validators = pubKeysToAddress(pubKeys);

        return
            ValSetAction(epoch, validators, weights, weightThreshold, height);
    }

    function pubKeysToAddress(
        bytes[] memory _pubKeys
    ) internal pure returns (address[] memory) {
        address[] memory addresses = new address[](_pubKeys.length);
        for (uint256 i; i < _pubKeys.length; ) {
            // each pubkey represented as uncompressed

            if (_pubKeys[i].length == 65) {
                bytes memory data = _pubKeys[i];

                // Ensure that first byte of pubkey is 0x04
                if (_pubKeys[i][0] != 0x04)
                    revert InvalidPublicKey(_pubKeys[i]);

                // create a new array with length - 1 (excluding the first 0x04 byte)
                bytes memory result = new bytes(data.length - 1);

                // use inline assembly for memory manipulation
                assembly {
                    // calculate the start of the `result` and `data` in memory
                    let resultData := add(result, 0x20) // points to the first byte of the result
                    let dataStart := add(data, 0x21) // points to the second byte of data (skip 0x04)

                    // copy 64 bytes from input (excluding the first byte) to result
                    mstore(resultData, mload(dataStart)) // copy the first 32 bytes
                    mstore(add(resultData, 0x20), mload(add(dataStart, 0x20))) // copy the next 32 bytes
                }

                addresses[i] = address(uint160(uint256(keccak256(result))));
            } else {
                revert InvalidPublicKey(_pubKeys[i]);
            }

            unchecked {
                ++i;
            }
        }
        return addresses;
    }

    /**
     * @notice Returns decoded fee approval
     * @dev Payload should not contain the selector
     * @param payload Body of the fee approval payload
     */
    function feeApproval(
        bytes memory payload
    ) internal view returns (FeeApprovalAction memory) {
        if (payload.length != ABI_SLOT_SIZE * 2)
            revert InvalidPayloadSize(ABI_SLOT_SIZE * 2, payload.length);

        (uint256 fee, uint256 expiry) = abi.decode(payload, (uint256, uint256));

        if (block.timestamp > expiry) {
            revert UserSignatureExpired(expiry);
        }
        if (fee == 0) {
            revert ZeroFee();
        }

        return FeeApprovalAction(fee, expiry);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Actions_LengthMismatch","type":"error"},{"inputs":[],"name":"InvalidEpoch","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidPayloadSize","type":"error"},{"inputs":[{"internalType":"bytes","name":"pubKey","type":"bytes"}],"name":"InvalidPublicKey","type":"error"},{"inputs":[],"name":"InvalidThreshold","type":"error"},{"inputs":[],"name":"InvalidValidatorSetSize","type":"error"},{"inputs":[],"name":"LengthMismatch","type":"error"},{"inputs":[],"name":"NoValidatorSet","type":"error"},{"inputs":[],"name":"NotEnoughSignatures","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PayloadAlreadyUsed","type":"error"},{"inputs":[{"internalType":"bytes4","name":"action","type":"bytes4"}],"name":"UnexpectedAction","type":"error"},{"inputs":[],"name":"ValSetAlreadySet","type":"error"},{"inputs":[],"name":"ZeroWeight","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"epoch","type":"uint256"},{"indexed":false,"internalType":"address[]","name":"validators","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"weights","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"threshold","type":"uint256"}],"name":"ValidatorSetUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_payloadHash","type":"bytes32"},{"internalType":"bytes","name":"_proof","type":"bytes"}],"name":"checkProof","outputs":[],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curEpoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"getValidatorSet","outputs":[{"components":[{"internalType":"address[]","name":"validators","type":"address[]"},{"internalType":"uint256[]","name":"weights","type":"uint256[]"},{"internalType":"uint256","name":"weightThreshold","type":"uint256"}],"internalType":"struct Consortium.ValidatorSet","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"_initialValSet","type":"bytes"}],"name":"setInitialValidatorSet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"bytes","name":"proof","type":"bytes"}],"name":"setNextValidatorSet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b5061001961001e565b6100d0565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff161561006e5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146100cd5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b611935806100df6000396000f3fe608060405234801561001057600080fd5b50600436106100a95760003560e01c8063a2f09d0611610071578063a2f09d0614610118578063c4d66de81461012b578063d88873151461013e578063e30c39781461015c578063f2fde38b14610164578063f5213bc11461017757600080fd5b80633ed18bea146100ae578063715018a6146100c357806379ba5097146100cb5780638da5cb5b146100d3578063a04e8293146100f8575b600080fd5b6100c16100bc366004611155565b61018a565b005b6100c161019a565b6100c16101ae565b6100db6101fb565b6040516001600160a01b0390911681526020015b60405180910390f35b61010b6101063660046111a0565b610230565b6040516100ef91906111b9565b6100c1610126366004611263565b61034f565b6100c16101393660046112a4565b610449565b6000805160206118e0833981519152546040519081526020016100ef565b6100db610567565b6100c16101723660046112a4565b610590565b6100c16101853660046112d4565b610615565b61019583838361071b565b505050565b6101a2610962565b6101ac6000610994565b565b33806101b8610567565b6001600160a01b0316146101ef5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b6101f881610994565b50565b6000807f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005b546001600160a01b031692915050565b61025460405180606001604052806060815260200160608152602001600081525090565b60008281527fbac09a3ab0e06910f94a49c10c16eb53146536ec1a9e948951735cde3a58b5016020908152604091829020825181546080938102820184019094526060810184815290939192849284918401828280156102dd57602002820191906000526020600020905b81546001600160a01b031681526001909101906020018083116102bf575b505050505081526020016001820180548060200260200160405190810160405280929190818152602001828054801561033557602002820191906000526020600020905b815481526020019060010190808311610321575b505050505081526020016002820154815250509050919050565b610357610962565b634aab1d6f60e01b610369828461133f565b6001600160e01b031916146103a857610382818361133f565b60405163f3c2729f60e01b81526001600160e01b031990911660048201526024016101e6565b6000805160206118e083398151915260006104036103c9846004818861136f565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506109d092505050565b825490915015610426576040516304641ce760e01b815260040160405180910390fd5b610443828260200151836040015184606001518560000151610bcb565b50505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff1615906001600160401b031660008115801561048e5750825b90506000826001600160401b031660011480156104aa5750303b155b9050811580156104b8575080155b156104d65760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561050057845460ff60401b1916600160401b1785555b61050986610ca9565b610511610cba565b610519610cba565b831561055f57845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b505050505050565b6000807f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00610220565b610598610962565b7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0080546001600160a01b0319166001600160a01b03831690811782556105dc6101fb565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a35050565b634aab1d6f60e01b610627848661133f565b6001600160e01b0319161461064057610382838561133f565b60006106526103c9856004818961136f565b905060006000805160206118e0833981519152905060006002878760405161067b929190611399565b602060405180830381855afa158015610698573d6000803e3d6000fd5b5050506040513d601f19601f820116820180604052508101906106bb91906113a9565b90506106c881868661018a565b81546106d59060016113d8565b8351146106f55760405163d5b25b6360e01b815260040160405180910390fd5b610712828460200151856040015186606001518760000151610bcb565b50505050505050565b6000805160206118e0833981519152805460000361074c57604051632df8ced160e11b815260040160405180910390fd5b600061075a83850185611481565b8254600090815260018401602052604090208054825192935090918114610797576040516001621398b960e31b0319815260040160405180910390fd5b8354600090815260018086016020526040822001815b83811015610920578581815181106107c7576107c7611575565b6020026020010151516040036109185760008682815181106107eb576107eb611575565b60209081029190910181015190810151604082015191925090811580159061081257508015155b15610914576000806108278f601b8686610cc2565b50909250905060008160038111156108415761084161158b565b14610850575050505050610918565b89868154811061086257610862611575565b6000918252602090912001546001600160a01b038381169116146108f05761088d8f601c8686610cc2565b50909250905060008160038111156108a7576108a761158b565b146108b6575050505050610918565b8986815481106108c8576108c8611575565b6000918252602090912001546001600160a01b038381169116146108f0575050505050610918565b86868154811061090257610902611575565b90600052602060002001548801975050505b5050505b6001016107ad565b50855460009081526001870160205260409020600201548210156109575760405163e246dc6360e01b815260040160405180910390fd5b505050505050505050565b3361096b6101fb565b6001600160a01b0316146101ac5760405163118cdaa760e01b81523360048201526024016101e6565b7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0080546001600160a01b03191681556109cc82610d91565b5050565b610a026040518060a0016040528060008152602001606081526020016060815260200160008152602001600081525090565b600080600080600086806020019051810190610a1e919061162f565b9450945094509450945060008585858585604051602001610a439594939291906117c6565b60405160208183030381529060405290508751815114610a8357875181516040516371cccdf360e11b8152600481019290925260248201526044016101e6565b600185511080610a94575060668551115b15610ab25760405163ca0cef7960e01b815260040160405180910390fd5b8351855114610ad4576040516344a7120b60e01b815260040160405180910390fd5b82600003610af55760405163aabd5a0960e01b815260040160405180910390fd5b6000805b8551811015610b6b57858181518110610b1457610b14611575565b6020026020010151600003610b3c576040516319a2a9bd60e01b815260040160405180910390fd5b858181518110610b4e57610b4e611575565b602002602001015182610b6191906113d8565b9150600101610af9565b5083811015610b8d5760405163aabd5a0960e01b815260040160405180910390fd5b6000610b9887610e02565b6040805160a081018252998a5260208a019190915288019590955250506060850191909152608084015250909392505050565b600081815260018601602052604090206002015415610bfd5760405163d5b25b6360e01b815260040160405180910390fd5b8085556040805160608101825285815260208082018690528183018590526000848152600189018252929092208151805192939192610c3f9284920190611058565b506020828101518051610c5892600185019201906110bd565b5060408201518160020155905050807ff401f5a770121fc0f928a49d6d2bbd6210392212fde4d7421059b944afba5165858585604051610c9a93929190611850565b60405180910390a25050505050565b610cb1610fdd565b6101f881611026565b6101ac610fdd565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610cfd5750600091506003905082610d87565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610d51573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610d7d57506000925060019150829050610d87565b9250600091508190505b9450945094915050565b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930080546001600160a01b031981166001600160a01b03848116918217845560405192169182907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a3505050565b6060600082516001600160401b03811115610e1f57610e1f6113f1565b604051908082528060200260200182016040528015610e48578160200160208202803683370190505b50905060005b8351811015610fd657838181518110610e6957610e69611575565b602002602001015151604103610fbc576000848281518110610e8d57610e8d611575565b60200260200101519050848281518110610ea957610ea9611575565b6020026020010151600081518110610ec357610ec3611575565b6020910101516001600160f81b031916600160fa1b14610f1157848281518110610eef57610eef611575565b6020026020010151604051635f475a1760e01b81526004016101e691906118b9565b600060018251610f2191906118cc565b6001600160401b03811115610f3857610f386113f1565b6040519080825280601f01601f191660200182016040528015610f62576020820181803683370190505b506021830151602082019081526041840151604083015281519020855191925090859085908110610f9557610f95611575565b60200260200101906001600160a01b031690816001600160a01b0316815250505050610fce565b838181518110610eef57610eef611575565b600101610e4e565b5092915050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166101ac57604051631afcd79f60e31b815260040160405180910390fd5b61102e610fdd565b6001600160a01b0381166101ef57604051631e4fbdf760e01b8152600060048201526024016101e6565b8280548282559060005260206000209081019282156110ad579160200282015b828111156110ad57825182546001600160a01b0319166001600160a01b03909116178255602090920191600190910190611078565b506110b99291506110f8565b5090565b8280548282559060005260206000209081019282156110ad579160200282015b828111156110ad5782518255916020019190600101906110dd565b5b808211156110b957600081556001016110f9565b60008083601f84011261111f57600080fd5b5081356001600160401b0381111561113657600080fd5b60208301915083602082850101111561114e57600080fd5b9250929050565b60008060006040848603121561116a57600080fd5b8335925060208401356001600160401b0381111561118757600080fd5b6111938682870161110d565b9497909650939450505050565b6000602082840312156111b257600080fd5b5035919050565b6020808252825160608383015280516080840181905260009291820190839060a08601905b808310156112075783516001600160a01b031682529284019260019290920191908401906111de565b5086840151868203601f190160408801528051808352908501935090840191506000905b8082101561124b578351835292840192918401916001919091019061122b565b50506040860151606086015280935050505092915050565b6000806020838503121561127657600080fd5b82356001600160401b0381111561128c57600080fd5b6112988582860161110d565b90969095509350505050565b6000602082840312156112b657600080fd5b81356001600160a01b03811681146112cd57600080fd5b9392505050565b600080600080604085870312156112ea57600080fd5b84356001600160401b038082111561130157600080fd5b61130d8883890161110d565b9096509450602087013591508082111561132657600080fd5b506113338782880161110d565b95989497509550505050565b6001600160e01b031981358181169160048510156113675780818660040360031b1b83161692505b505092915050565b6000808585111561137f57600080fd5b8386111561138c57600080fd5b5050820193919092039150565b8183823760009101908152919050565b6000602082840312156113bb57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b808201808211156113eb576113eb6113c2565b92915050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b038111828210171561142f5761142f6113f1565b604052919050565b60006001600160401b03821115611450576114506113f1565b5060051b60200190565b60006001600160401b03821115611473576114736113f1565b50601f01601f191660200190565b6000602080838503121561149457600080fd5b82356001600160401b03808211156114ab57600080fd5b818501915085601f8301126114bf57600080fd5b81356114d26114cd82611437565b611407565b81815260059190911b830184019084810190888311156114f157600080fd5b8585015b838110156115685780358581111561150d5760008081fd5b8601603f81018b1361151f5760008081fd5b8781013560406115316114cd8361145a565b8281528d828486010111156115465760008081fd5b828285018c83013760009281018b0192909252508452509186019186016114f5565b5098975050505050505050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052602160045260246000fd5b60005b838110156115bc5781810151838201526020016115a4565b50506000910152565b600082601f8301126115d657600080fd5b815160206115e66114cd83611437565b8083825260208201915060208460051b87010193508684111561160857600080fd5b602086015b84811015611624578051835291830191830161160d565b509695505050505050565b600080600080600060a0868803121561164757600080fd5b8551945060208601516001600160401b038082111561166557600080fd5b818801915088601f83011261167957600080fd5b81516116876114cd82611437565b8082825260208201915060208360051b86010192508b8311156116a957600080fd5b602085015b8381101561171d578051858111156116c557600080fd5b8601603f81018e136116d657600080fd5b60208101516116e76114cd8261145a565b8181528f60408385010111156116fc57600080fd5b61170d8260208301604086016115a1565b85525050602092830192016116ae565b5060408b0151909850935050508082111561173757600080fd5b50611744888289016115c5565b606088015160809098015196999598509695949350505050565b600081518084526117768160208601602086016115a1565b601f01601f19169290920160200192915050565b60008151808452602080850194506020840160005b838110156117bb5781518752958201959082019060010161179f565b509495945050505050565b600060a08201878352602060a0602085015281885180845260c08601915060c08160051b870101935060208a0160005b828110156118245760bf1988870301845261181286835161175e565b955092840192908401906001016117f6565b5050505050828103604084015261183b818761178a565b60608401959095525050608001529392505050565b606080825284519082018190526000906020906080840190828801845b828110156118925781516001600160a01b03168452928401929084019060010161186d565b50505083810360208501526118a7818761178a565b92505050826040830152949350505050565b6020815260006112cd602083018461175e565b818103818111156113eb576113eb6113c256febac09a3ab0e06910f94a49c10c16eb53146536ec1a9e948951735cde3a58b500a264697066735822122027e0c40188b678ca7212d1c587e1b3c2ba73c45ed858f1e70ee53c7493d0ed2c64736f6c63430008180033

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100a95760003560e01c8063a2f09d0611610071578063a2f09d0614610118578063c4d66de81461012b578063d88873151461013e578063e30c39781461015c578063f2fde38b14610164578063f5213bc11461017757600080fd5b80633ed18bea146100ae578063715018a6146100c357806379ba5097146100cb5780638da5cb5b146100d3578063a04e8293146100f8575b600080fd5b6100c16100bc366004611155565b61018a565b005b6100c161019a565b6100c16101ae565b6100db6101fb565b6040516001600160a01b0390911681526020015b60405180910390f35b61010b6101063660046111a0565b610230565b6040516100ef91906111b9565b6100c1610126366004611263565b61034f565b6100c16101393660046112a4565b610449565b6000805160206118e0833981519152546040519081526020016100ef565b6100db610567565b6100c16101723660046112a4565b610590565b6100c16101853660046112d4565b610615565b61019583838361071b565b505050565b6101a2610962565b6101ac6000610994565b565b33806101b8610567565b6001600160a01b0316146101ef5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b6101f881610994565b50565b6000807f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005b546001600160a01b031692915050565b61025460405180606001604052806060815260200160608152602001600081525090565b60008281527fbac09a3ab0e06910f94a49c10c16eb53146536ec1a9e948951735cde3a58b5016020908152604091829020825181546080938102820184019094526060810184815290939192849284918401828280156102dd57602002820191906000526020600020905b81546001600160a01b031681526001909101906020018083116102bf575b505050505081526020016001820180548060200260200160405190810160405280929190818152602001828054801561033557602002820191906000526020600020905b815481526020019060010190808311610321575b505050505081526020016002820154815250509050919050565b610357610962565b634aab1d6f60e01b610369828461133f565b6001600160e01b031916146103a857610382818361133f565b60405163f3c2729f60e01b81526001600160e01b031990911660048201526024016101e6565b6000805160206118e083398151915260006104036103c9846004818861136f565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506109d092505050565b825490915015610426576040516304641ce760e01b815260040160405180910390fd5b610443828260200151836040015184606001518560000151610bcb565b50505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff1615906001600160401b031660008115801561048e5750825b90506000826001600160401b031660011480156104aa5750303b155b9050811580156104b8575080155b156104d65760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561050057845460ff60401b1916600160401b1785555b61050986610ca9565b610511610cba565b610519610cba565b831561055f57845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b505050505050565b6000807f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00610220565b610598610962565b7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0080546001600160a01b0319166001600160a01b03831690811782556105dc6101fb565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a35050565b634aab1d6f60e01b610627848661133f565b6001600160e01b0319161461064057610382838561133f565b60006106526103c9856004818961136f565b905060006000805160206118e0833981519152905060006002878760405161067b929190611399565b602060405180830381855afa158015610698573d6000803e3d6000fd5b5050506040513d601f19601f820116820180604052508101906106bb91906113a9565b90506106c881868661018a565b81546106d59060016113d8565b8351146106f55760405163d5b25b6360e01b815260040160405180910390fd5b610712828460200151856040015186606001518760000151610bcb565b50505050505050565b6000805160206118e0833981519152805460000361074c57604051632df8ced160e11b815260040160405180910390fd5b600061075a83850185611481565b8254600090815260018401602052604090208054825192935090918114610797576040516001621398b960e31b0319815260040160405180910390fd5b8354600090815260018086016020526040822001815b83811015610920578581815181106107c7576107c7611575565b6020026020010151516040036109185760008682815181106107eb576107eb611575565b60209081029190910181015190810151604082015191925090811580159061081257508015155b15610914576000806108278f601b8686610cc2565b50909250905060008160038111156108415761084161158b565b14610850575050505050610918565b89868154811061086257610862611575565b6000918252602090912001546001600160a01b038381169116146108f05761088d8f601c8686610cc2565b50909250905060008160038111156108a7576108a761158b565b146108b6575050505050610918565b8986815481106108c8576108c8611575565b6000918252602090912001546001600160a01b038381169116146108f0575050505050610918565b86868154811061090257610902611575565b90600052602060002001548801975050505b5050505b6001016107ad565b50855460009081526001870160205260409020600201548210156109575760405163e246dc6360e01b815260040160405180910390fd5b505050505050505050565b3361096b6101fb565b6001600160a01b0316146101ac5760405163118cdaa760e01b81523360048201526024016101e6565b7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0080546001600160a01b03191681556109cc82610d91565b5050565b610a026040518060a0016040528060008152602001606081526020016060815260200160008152602001600081525090565b600080600080600086806020019051810190610a1e919061162f565b9450945094509450945060008585858585604051602001610a439594939291906117c6565b60405160208183030381529060405290508751815114610a8357875181516040516371cccdf360e11b8152600481019290925260248201526044016101e6565b600185511080610a94575060668551115b15610ab25760405163ca0cef7960e01b815260040160405180910390fd5b8351855114610ad4576040516344a7120b60e01b815260040160405180910390fd5b82600003610af55760405163aabd5a0960e01b815260040160405180910390fd5b6000805b8551811015610b6b57858181518110610b1457610b14611575565b6020026020010151600003610b3c576040516319a2a9bd60e01b815260040160405180910390fd5b858181518110610b4e57610b4e611575565b602002602001015182610b6191906113d8565b9150600101610af9565b5083811015610b8d5760405163aabd5a0960e01b815260040160405180910390fd5b6000610b9887610e02565b6040805160a081018252998a5260208a019190915288019590955250506060850191909152608084015250909392505050565b600081815260018601602052604090206002015415610bfd5760405163d5b25b6360e01b815260040160405180910390fd5b8085556040805160608101825285815260208082018690528183018590526000848152600189018252929092208151805192939192610c3f9284920190611058565b506020828101518051610c5892600185019201906110bd565b5060408201518160020155905050807ff401f5a770121fc0f928a49d6d2bbd6210392212fde4d7421059b944afba5165858585604051610c9a93929190611850565b60405180910390a25050505050565b610cb1610fdd565b6101f881611026565b6101ac610fdd565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610cfd5750600091506003905082610d87565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610d51573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610d7d57506000925060019150829050610d87565b9250600091508190505b9450945094915050565b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930080546001600160a01b031981166001600160a01b03848116918217845560405192169182907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a3505050565b6060600082516001600160401b03811115610e1f57610e1f6113f1565b604051908082528060200260200182016040528015610e48578160200160208202803683370190505b50905060005b8351811015610fd657838181518110610e6957610e69611575565b602002602001015151604103610fbc576000848281518110610e8d57610e8d611575565b60200260200101519050848281518110610ea957610ea9611575565b6020026020010151600081518110610ec357610ec3611575565b6020910101516001600160f81b031916600160fa1b14610f1157848281518110610eef57610eef611575565b6020026020010151604051635f475a1760e01b81526004016101e691906118b9565b600060018251610f2191906118cc565b6001600160401b03811115610f3857610f386113f1565b6040519080825280601f01601f191660200182016040528015610f62576020820181803683370190505b506021830151602082019081526041840151604083015281519020855191925090859085908110610f9557610f95611575565b60200260200101906001600160a01b031690816001600160a01b0316815250505050610fce565b838181518110610eef57610eef611575565b600101610e4e565b5092915050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166101ac57604051631afcd79f60e31b815260040160405180910390fd5b61102e610fdd565b6001600160a01b0381166101ef57604051631e4fbdf760e01b8152600060048201526024016101e6565b8280548282559060005260206000209081019282156110ad579160200282015b828111156110ad57825182546001600160a01b0319166001600160a01b03909116178255602090920191600190910190611078565b506110b99291506110f8565b5090565b8280548282559060005260206000209081019282156110ad579160200282015b828111156110ad5782518255916020019190600101906110dd565b5b808211156110b957600081556001016110f9565b60008083601f84011261111f57600080fd5b5081356001600160401b0381111561113657600080fd5b60208301915083602082850101111561114e57600080fd5b9250929050565b60008060006040848603121561116a57600080fd5b8335925060208401356001600160401b0381111561118757600080fd5b6111938682870161110d565b9497909650939450505050565b6000602082840312156111b257600080fd5b5035919050565b6020808252825160608383015280516080840181905260009291820190839060a08601905b808310156112075783516001600160a01b031682529284019260019290920191908401906111de565b5086840151868203601f190160408801528051808352908501935090840191506000905b8082101561124b578351835292840192918401916001919091019061122b565b50506040860151606086015280935050505092915050565b6000806020838503121561127657600080fd5b82356001600160401b0381111561128c57600080fd5b6112988582860161110d565b90969095509350505050565b6000602082840312156112b657600080fd5b81356001600160a01b03811681146112cd57600080fd5b9392505050565b600080600080604085870312156112ea57600080fd5b84356001600160401b038082111561130157600080fd5b61130d8883890161110d565b9096509450602087013591508082111561132657600080fd5b506113338782880161110d565b95989497509550505050565b6001600160e01b031981358181169160048510156113675780818660040360031b1b83161692505b505092915050565b6000808585111561137f57600080fd5b8386111561138c57600080fd5b5050820193919092039150565b8183823760009101908152919050565b6000602082840312156113bb57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b808201808211156113eb576113eb6113c2565b92915050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f191681016001600160401b038111828210171561142f5761142f6113f1565b604052919050565b60006001600160401b03821115611450576114506113f1565b5060051b60200190565b60006001600160401b03821115611473576114736113f1565b50601f01601f191660200190565b6000602080838503121561149457600080fd5b82356001600160401b03808211156114ab57600080fd5b818501915085601f8301126114bf57600080fd5b81356114d26114cd82611437565b611407565b81815260059190911b830184019084810190888311156114f157600080fd5b8585015b838110156115685780358581111561150d5760008081fd5b8601603f81018b1361151f5760008081fd5b8781013560406115316114cd8361145a565b8281528d828486010111156115465760008081fd5b828285018c83013760009281018b0192909252508452509186019186016114f5565b5098975050505050505050565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052602160045260246000fd5b60005b838110156115bc5781810151838201526020016115a4565b50506000910152565b600082601f8301126115d657600080fd5b815160206115e66114cd83611437565b8083825260208201915060208460051b87010193508684111561160857600080fd5b602086015b84811015611624578051835291830191830161160d565b509695505050505050565b600080600080600060a0868803121561164757600080fd5b8551945060208601516001600160401b038082111561166557600080fd5b818801915088601f83011261167957600080fd5b81516116876114cd82611437565b8082825260208201915060208360051b86010192508b8311156116a957600080fd5b602085015b8381101561171d578051858111156116c557600080fd5b8601603f81018e136116d657600080fd5b60208101516116e76114cd8261145a565b8181528f60408385010111156116fc57600080fd5b61170d8260208301604086016115a1565b85525050602092830192016116ae565b5060408b0151909850935050508082111561173757600080fd5b50611744888289016115c5565b606088015160809098015196999598509695949350505050565b600081518084526117768160208601602086016115a1565b601f01601f19169290920160200192915050565b60008151808452602080850194506020840160005b838110156117bb5781518752958201959082019060010161179f565b509495945050505050565b600060a08201878352602060a0602085015281885180845260c08601915060c08160051b870101935060208a0160005b828110156118245760bf1988870301845261181286835161175e565b955092840192908401906001016117f6565b5050505050828103604084015261183b818761178a565b60608401959095525050608001529392505050565b606080825284519082018190526000906020906080840190828801845b828110156118925781516001600160a01b03168452928401929084019060010161186d565b50505083810360208501526118a7818761178a565b92505050826040830152949350505050565b6020815260006112cd602083018461175e565b818103818111156113eb576113eb6113c256febac09a3ab0e06910f94a49c10c16eb53146536ec1a9e948951735cde3a58b500a264697066735822122027e0c40188b678ca7212d1c587e1b3c2ba73c45ed858f1e70ee53c7493d0ed2c64736f6c63430008180033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.