Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
Contract Name:
ZeroCouponDiscountModel
Compiler Version
v0.8.22+commit.4fc1097e
Optimization Enabled:
No with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.22;
import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol";
import {IDiscountModel} from "../interfaces/IDiscountModel.sol";
import {LogExpMath} from "../utils/LogExpMath.sol";
import {Math} from "openzeppelin-math/Math.sol";
/**
* @title ZeroCouponDiscountModel
* @notice This model calculates the price of a zero coupon bond using the zero coupon bond formula with compounded returns
*/
contract ZeroCouponDiscountModel is IDiscountModel, OwnableUpgradeable {
using Math for uint256;
uint256 private constant UNIT = 1e18;
int256 private constant SECONDS_PER_YEAR = 365 days;
constructor() {
_disableInitializers();
}
function initialize() external initializer {}
/// @dev See IDiscountModel.description
function description() external pure override returns (string memory) {
return "Discount calculated using the zero coupon bond formula";
}
/// @dev See IDiscountModel.getPrice.
function getPrice(
uint256 initialImpliedAPY,
uint256 futurePTValue,
IDiscountModel.Term memory term
) external pure override returns (uint256) {
uint256 timeLeft = term.expiryTimestamp - term.currentTimestamp;
if (timeLeft == 0) {
return futurePTValue;
}
int256 t = int256(timeLeft * UNIT) / SECONDS_PER_YEAR;
int256 unitInt = int256(UNIT);
int256 base = unitInt + int256(initialImpliedAPY);
int256 ratePerSecond = LogExpMath.ln(base);
int256 denominator = LogExpMath.exp((ratePerSecond * t) / unitInt);
int256 presentValue = (int256(futurePTValue) * unitInt) / denominator;
return uint256(presentValue);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²56 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²56. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such
// that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 24.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 28
inverse *= 2 - denominator * inverse; // inverse mod 2¹6
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 264
inverse *= 2 - denominator * inverse; // inverse mod 2¹²8
inverse *= 2 - denominator * inverse; // inverse mod 2²56
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is
// less than 2²56, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax = 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) = 1 mod p`. As a consequence, we have `a * a**(p-2) = 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `e_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2).
// This is going to be our x_0 (and e_0)
xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// = 0
// Which proves that for all n = 1, sqrt(a) = x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// e_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | e_n² / (2 * x_n) |
// = e_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// e_1 = e_0² / | (2 * x_0) |
// = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// = 2**(2*e-4) / (3 * 2**(e-1))
// = 2**(e-3) / 3
// = 2**(e-3-log2(3))
// = 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n:
// e_{n+1} = e_n² / | (2 * x_n) |
// = (2**(e-k))² / (2 * 2**(e-1))
// = 2**(2*e-2*k) / 2**e
// = 2**(e-2*k)
xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144) -- general case with k = 72
// Because e = 128 (as discussed during the first estimation phase), we know have reached a precision
// e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;
interface IDiscountModel {
struct Term {
uint256 startTimestamp;
uint256 currentTimestamp;
uint256 expiryTimestamp;
}
/**
* @notice Computes the price for a given principal token.
* @dev This function can be implemented customly, so not all argumnets need to be used
*
* @param initialImpliedAPY The initial implied APY of the principal token (in 18 decimals).
* @param futurePTValue The future value of the principal token at maturity.
* @param term Time data for the term of the principal token.
* @return price The computed price, expressed with futurePTValue's decimals precision.
*/
function getPrice(
uint256 initialImpliedAPY,
uint256 futurePTValue,
Term memory term
) external pure returns (uint256 price);
/**
* @notice Returns a human-readable description of the discount model.
* @return A string describing the discount model.
*/
function description() external pure returns (string memory);
}// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.8.0;
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
unchecked {
require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
unchecked {
// The real natural logarithm is not defined for negative numbers or zero.
require(a > 0, "out of bounds");
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
}
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
require(x < 2 ** 255, "x out of bounds");
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
require(y < MILD_EXPONENT_BOUND, "y out of bounds");
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
"product out of bounds"
);
return uint256(exp(logx_times_y));
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
unchecked {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
unchecked {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
}{
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"appendCBOR": true,
"bytecodeHash": "ipfs",
"useLiteralContent": false
},
"optimizer": {
"enabled": false,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": [
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
"openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/",
"openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/",
"openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/",
"openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
"openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/",
"openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/",
"config/=lib/spectra-contracts-configs/script/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"spectra-contracts-configs/=lib/spectra-contracts-configs/"
],
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"initialImpliedAPY","type":"uint256"},{"internalType":"uint256","name":"futurePTValue","type":"uint256"},{"components":[{"internalType":"uint256","name":"startTimestamp","type":"uint256"},{"internalType":"uint256","name":"currentTimestamp","type":"uint256"},{"internalType":"uint256","name":"expiryTimestamp","type":"uint256"}],"internalType":"struct IDiscountModel.Term","name":"term","type":"tuple"}],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
608060405234801562000010575f80fd5b50620000216200002760201b60201c565b62000191565b5f620000386200012b60201b60201c565b9050805f0160089054906101000a900460ff161562000083576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b67ffffffffffffffff8016815f015f9054906101000a900467ffffffffffffffff1667ffffffffffffffff1614620001285767ffffffffffffffff815f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d267ffffffffffffffff6040516200011f919062000176565b60405180910390a15b50565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f67ffffffffffffffff82169050919050565b620001708162000152565b82525050565b5f6020820190506200018b5f83018462000165565b92915050565b611a6f806200019f5f395ff3fe608060405234801561000f575f80fd5b5060043610610060575f3560e01c8063715018a6146100645780637284e4161461006e5780638129fc1c1461008c5780638da5cb5b14610096578063f2fde38b146100b4578063f87eba5d146100d0575b5f80fd5b61006c610100565b005b610076610113565b604051610083919061146d565b60405180910390f35b610094610133565b005b61009e6102aa565b6040516100ab91906114cc565b60405180910390f35b6100ce60048036038101906100c9919061151c565b6102df565b005b6100ea60048036038101906100e59190611657565b610363565b6040516100f791906116b6565b60405180910390f35b610108610426565b6101115f6104ad565b565b6060604051806060016040528060368152602001611a0460369139905090565b5f61013c61057e565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff161480156101845750825b90505f60018367ffffffffffffffff161480156101b757505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156101c5575080155b156101fc576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315610249576001855f0160086101000a81548160ff0219169083151502179055505b83156102a3575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2600160405161029a9190611724565b60405180910390a15b5050505050565b5f806102b46105a5565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b6102e7610426565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610357575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161034e91906114cc565b60405180910390fd5b610360816104ad565b50565b5f8082602001518360400151610379919061176a565b90505f810361038b578391505061041f565b5f6301e13380670de0b6b3a7640000836103a5919061179d565b6103af9190611814565b90505f670de0b6b3a764000090505f87826103ca919061187c565b90505f6103d6826105cc565b90505f6103f88486846103e991906118bd565b6103f39190611814565b61067f565b90505f81858b61040891906118bd565b6104129190611814565b9050809750505050505050505b9392505050565b61042e610c7e565b73ffffffffffffffffffffffffffffffffffffffff1661044c6102aa565b73ffffffffffffffffffffffffffffffffffffffff16146104ab5761046f610c7e565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016104a291906114cc565b60405180910390fd5b565b5f6104b66105a5565b90505f815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905082825f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a3505050565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300905090565b5f80821361060f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106069061197d565b60405180910390fd5b8167016345785d8a0000670de0b6b3a764000003128015610641575067016345785d8a0000670de0b6b3a76400000182125b1561066e57670de0b6b3a764000061065883610c85565b81610666576106656117e7565b5b05905061067a565b61067782610e9d565b90505b919050565b5f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082121580156106b9575068070c1cc73b00c800008213155b6106f8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106ef906119e5565b60405180910390fd5b5f82121561072c5761070b825f0361067f565b670de0b6b3a7640000800281610724576107236117e7565b5b059050610c79565b5f6806f05b59d3b2000000831261076b576806f05b59d3b200000083039250770195e54c5dd42177f53a27172fa9ec63026282700000000090506107a3565b6803782dace9d9000000831261079d576803782dace9d9000000830392506b1425982cf597cd205cef738090506107a2565b600190505b5b6064830292505f68056bc75e2d63100000905068ad78ebc5ac6200000084126108025768ad78ebc5ac620000008403935068056bc75e2d631000006e01855144814a7ff805980ff00840008202816107fe576107fd6117e7565b5b0590505b6856bc75e2d631000000841261084b576856bc75e2d6310000008403935068056bc75e2d631000006b02df0ab5a80a22c61ab5a700820281610847576108466117e7565b5b0590505b682b5e3af16b18800000841261089257682b5e3af16b188000008403935068056bc75e2d63100000693f1fce3da636ea5cf85082028161088e5761088d6117e7565b5b0590505b6815af1d78b58c40000084126108d9576815af1d78b58c4000008403935068056bc75e2d63100000690127fa27722cc06cc5e28202816108d5576108d46117e7565b5b0590505b680ad78ebc5ac6200000841261091f57680ad78ebc5ac62000008403935068056bc75e2d6310000068280e60114edb805d0382028161091b5761091a6117e7565b5b0590505b68056bc75e2d6310000084126109655768056bc75e2d631000008403935068056bc75e2d63100000680ebc5fb41746121110820281610961576109606117e7565b5b0590505b6802b5e3af16b188000084126109ab576802b5e3af16b18800008403935068056bc75e2d631000006808f00f760a4b2db55d8202816109a7576109a66117e7565b5b0590505b68015af1d78b58c4000084126109f15768015af1d78b58c400008403935068056bc75e2d631000006806f5f17757889379378202816109ed576109ec6117e7565b5b0590505b5f68056bc75e2d6310000090505f8590508082019150600268056bc75e2d6310000087830281610a2457610a236117e7565b5b0581610a3357610a326117e7565b5b0590508082019150600368056bc75e2d6310000087830281610a5857610a576117e7565b5b0581610a6757610a666117e7565b5b0590508082019150600468056bc75e2d6310000087830281610a8c57610a8b6117e7565b5b0581610a9b57610a9a6117e7565b5b0590508082019150600568056bc75e2d6310000087830281610ac057610abf6117e7565b5b0581610acf57610ace6117e7565b5b0590508082019150600668056bc75e2d6310000087830281610af457610af36117e7565b5b0581610b0357610b026117e7565b5b0590508082019150600768056bc75e2d6310000087830281610b2857610b276117e7565b5b0581610b3757610b366117e7565b5b0590508082019150600868056bc75e2d6310000087830281610b5c57610b5b6117e7565b5b0581610b6b57610b6a6117e7565b5b0590508082019150600968056bc75e2d6310000087830281610b9057610b8f6117e7565b5b0581610b9f57610b9e6117e7565b5b0590508082019150600a68056bc75e2d6310000087830281610bc457610bc36117e7565b5b0581610bd357610bd26117e7565b5b0590508082019150600b68056bc75e2d6310000087830281610bf857610bf76117e7565b5b0581610c0757610c066117e7565b5b0590508082019150600c68056bc75e2d6310000087830281610c2c57610c2b6117e7565b5b0581610c3b57610c3a6117e7565b5b059050808201915060648468056bc75e2d6310000084860281610c6157610c606117e7565b5b050281610c7157610c706117e7565b5b059450505050505b919050565b5f33905090565b5f670de0b6b3a7640000820291505f6ec097ce7bc90715b34b9f100000000083016ec097ce7bc90715b34b9f10000000008085030281610cc857610cc76117e7565b5b0590505f6ec097ce7bc90715b34b9f100000000082830281610ced57610cec6117e7565b5b0590505f8290505f8190506ec097ce7bc90715b34b9f100000000083830281610d1957610d186117e7565b5b05915060038281610d2d57610d2c6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d5357610d526117e7565b5b05915060058281610d6757610d666117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d8d57610d8c6117e7565b5b05915060078281610da157610da06117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610dc757610dc66117e7565b5b05915060098281610ddb57610dda6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e0157610e006117e7565b5b059150600b8281610e1557610e146117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e3b57610e3a6117e7565b5b059150600d8281610e4f57610e4e6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e7557610e746117e7565b5b059150600f8281610e8957610e886117e7565b5b058101905060028102945050505050919050565b5f670de0b6b3a7640000821215610eda57610ed182670de0b6b3a7640000800281610ecb57610eca6117e7565b5b05610e9d565b5f0390506113de565b5f670de0b6b3a7640000770195e54c5dd42177f53a27172fa9ec630262827000000000028312610f3e57770195e54c5dd42177f53a27172fa9ec6302628270000000008381610f2c57610f2b6117e7565b5b0592506806f05b59d3b2000000810190505b670de0b6b3a76400006b1425982cf597cd205cef7380028312610f89576b1425982cf597cd205cef73808381610f7757610f766117e7565b5b0592506803782dace9d9000000810190505b6064810290506064830292506e01855144814a7ff805980ff00840008312610fe7576e01855144814a7ff805980ff008400068056bc75e2d63100000840281610fd557610fd46117e7565b5b05925068ad78ebc5ac62000000810190505b6b02df0ab5a80a22c61ab5a7008312611033576b02df0ab5a80a22c61ab5a70068056bc75e2d63100000840281611021576110206117e7565b5b0592506856bc75e2d631000000810190505b693f1fce3da636ea5cf850831261107b57693f1fce3da636ea5cf85068056bc75e2d63100000840281611069576110686117e7565b5b059250682b5e3af16b18800000810190505b690127fa27722cc06cc5e283126110c357690127fa27722cc06cc5e268056bc75e2d631000008402816110b1576110b06117e7565b5b0592506815af1d78b58c400000810190505b68280e60114edb805d0383126111095768280e60114edb805d0368056bc75e2d631000008402816110f7576110f66117e7565b5b059250680ad78ebc5ac6200000810190505b680ebc5fb41746121110831261114f57680ebc5fb4174612111068056bc75e2d6310000084028161113d5761113c6117e7565b5b05925068056bc75e2d63100000810190505b6808f00f760a4b2db55d8312611195576808f00f760a4b2db55d68056bc75e2d63100000840281611183576111826117e7565b5b0592506802b5e3af16b1880000810190505b6806f5f177578893793783126111db576806f5f177578893793768056bc75e2d631000008402816111c9576111c86117e7565b5b05925068015af1d78b58c40000810190505b6806248f33704b2866038312611220576806248f33704b28660368056bc75e2d6310000084028161120f5761120e6117e7565b5b05925067ad78ebc5ac620000810190505b6805c548670b9510e7ac8312611265576805c548670b9510e7ac68056bc75e2d63100000840281611254576112536117e7565b5b0592506756bc75e2d6310000810190505b5f68056bc75e2d63100000840168056bc75e2d63100000808603028161128e5761128d6117e7565b5b0590505f68056bc75e2d63100000828302816112ad576112ac6117e7565b5b0590505f8290505f81905068056bc75e2d63100000838302816112d3576112d26117e7565b5b059150600382816112e7576112e66117e7565b5b058101905068056bc75e2d6310000083830281611307576113066117e7565b5b0591506005828161131b5761131a6117e7565b5b058101905068056bc75e2d631000008383028161133b5761133a6117e7565b5b0591506007828161134f5761134e6117e7565b5b058101905068056bc75e2d631000008383028161136f5761136e6117e7565b5b05915060098281611383576113826117e7565b5b058101905068056bc75e2d63100000838302816113a3576113a26117e7565b5b059150600b82816113b7576113b66117e7565b5b05810190506002810290506064818601816113d5576113d46117e7565b5b05955050505050505b919050565b5f81519050919050565b5f82825260208201905092915050565b5f5b8381101561141a5780820151818401526020810190506113ff565b5f8484015250505050565b5f601f19601f8301169050919050565b5f61143f826113e3565b61144981856113ed565b93506114598185602086016113fd565b61146281611425565b840191505092915050565b5f6020820190508181035f8301526114858184611435565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6114b68261148d565b9050919050565b6114c6816114ac565b82525050565b5f6020820190506114df5f8301846114bd565b92915050565b5f604051905090565b5f80fd5b6114fb816114ac565b8114611505575f80fd5b50565b5f81359050611516816114f2565b92915050565b5f60208284031215611531576115306114ee565b5b5f61153e84828501611508565b91505092915050565b5f819050919050565b61155981611547565b8114611563575f80fd5b50565b5f8135905061157481611550565b92915050565b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6115b482611425565b810181811067ffffffffffffffff821117156115d3576115d261157e565b5b80604052505050565b5f6115e56114e5565b90506115f182826115ab565b919050565b5f6060828403121561160b5761160a61157a565b5b61161560606115dc565b90505f61162484828501611566565b5f83015250602061163784828501611566565b602083015250604061164b84828501611566565b60408301525092915050565b5f805f60a0848603121561166e5761166d6114ee565b5b5f61167b86828701611566565b935050602061168c86828701611566565b925050604061169d868287016115f6565b9150509250925092565b6116b081611547565b82525050565b5f6020820190506116c95f8301846116a7565b92915050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f61170e611709611704846116cf565b6116eb565b6116d8565b9050919050565b61171e816116f4565b82525050565b5f6020820190506117375f830184611715565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61177482611547565b915061177f83611547565b92508282039050818111156117975761179661173d565b5b92915050565b5f6117a782611547565b91506117b283611547565b92508282026117c081611547565b915082820484148315176117d7576117d661173d565b5b5092915050565b5f819050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61181e826117de565b9150611829836117de565b925082611839576118386117e7565b5b60015f0383147f8000000000000000000000000000000000000000000000000000000000000000831416156118715761187061173d565b5b828205905092915050565b5f611886826117de565b9150611891836117de565b92508282019050828112155f8312168382125f8412151617156118b7576118b661173d565b5b92915050565b5f6118c7826117de565b91506118d2836117de565b92508282026118e0816117de565b91507f800000000000000000000000000000000000000000000000000000000000000084145f841216156119175761191661173d565b5b828205841483151761192c5761192b61173d565b5b5092915050565b7f6f7574206f6620626f756e6473000000000000000000000000000000000000005f82015250565b5f611967600d836113ed565b915061197282611933565b602082019050919050565b5f6020820190508181035f8301526119948161195b565b9050919050565b7f496e76616c6964206578706f6e656e74000000000000000000000000000000005f82015250565b5f6119cf6010836113ed565b91506119da8261199b565b602082019050919050565b5f6020820190508181035f8301526119fc816119c3565b905091905056fe446973636f756e742063616c63756c61746564207573696e6720746865207a65726f20636f75706f6e20626f6e6420666f726d756c61a264697066735822122019b4a284924dc3862ecea723c60f8550547da392396f287950662652b61661f564736f6c63430008160033
Deployed Bytecode
0x608060405234801561000f575f80fd5b5060043610610060575f3560e01c8063715018a6146100645780637284e4161461006e5780638129fc1c1461008c5780638da5cb5b14610096578063f2fde38b146100b4578063f87eba5d146100d0575b5f80fd5b61006c610100565b005b610076610113565b604051610083919061146d565b60405180910390f35b610094610133565b005b61009e6102aa565b6040516100ab91906114cc565b60405180910390f35b6100ce60048036038101906100c9919061151c565b6102df565b005b6100ea60048036038101906100e59190611657565b610363565b6040516100f791906116b6565b60405180910390f35b610108610426565b6101115f6104ad565b565b6060604051806060016040528060368152602001611a0460369139905090565b5f61013c61057e565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff161480156101845750825b90505f60018367ffffffffffffffff161480156101b757505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156101c5575080155b156101fc576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315610249576001855f0160086101000a81548160ff0219169083151502179055505b83156102a3575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2600160405161029a9190611724565b60405180910390a15b5050505050565b5f806102b46105a5565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b6102e7610426565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610357575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161034e91906114cc565b60405180910390fd5b610360816104ad565b50565b5f8082602001518360400151610379919061176a565b90505f810361038b578391505061041f565b5f6301e13380670de0b6b3a7640000836103a5919061179d565b6103af9190611814565b90505f670de0b6b3a764000090505f87826103ca919061187c565b90505f6103d6826105cc565b90505f6103f88486846103e991906118bd565b6103f39190611814565b61067f565b90505f81858b61040891906118bd565b6104129190611814565b9050809750505050505050505b9392505050565b61042e610c7e565b73ffffffffffffffffffffffffffffffffffffffff1661044c6102aa565b73ffffffffffffffffffffffffffffffffffffffff16146104ab5761046f610c7e565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016104a291906114cc565b60405180910390fd5b565b5f6104b66105a5565b90505f815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905082825f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a3505050565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300905090565b5f80821361060f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106069061197d565b60405180910390fd5b8167016345785d8a0000670de0b6b3a764000003128015610641575067016345785d8a0000670de0b6b3a76400000182125b1561066e57670de0b6b3a764000061065883610c85565b81610666576106656117e7565b5b05905061067a565b61067782610e9d565b90505b919050565b5f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082121580156106b9575068070c1cc73b00c800008213155b6106f8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106ef906119e5565b60405180910390fd5b5f82121561072c5761070b825f0361067f565b670de0b6b3a7640000800281610724576107236117e7565b5b059050610c79565b5f6806f05b59d3b2000000831261076b576806f05b59d3b200000083039250770195e54c5dd42177f53a27172fa9ec63026282700000000090506107a3565b6803782dace9d9000000831261079d576803782dace9d9000000830392506b1425982cf597cd205cef738090506107a2565b600190505b5b6064830292505f68056bc75e2d63100000905068ad78ebc5ac6200000084126108025768ad78ebc5ac620000008403935068056bc75e2d631000006e01855144814a7ff805980ff00840008202816107fe576107fd6117e7565b5b0590505b6856bc75e2d631000000841261084b576856bc75e2d6310000008403935068056bc75e2d631000006b02df0ab5a80a22c61ab5a700820281610847576108466117e7565b5b0590505b682b5e3af16b18800000841261089257682b5e3af16b188000008403935068056bc75e2d63100000693f1fce3da636ea5cf85082028161088e5761088d6117e7565b5b0590505b6815af1d78b58c40000084126108d9576815af1d78b58c4000008403935068056bc75e2d63100000690127fa27722cc06cc5e28202816108d5576108d46117e7565b5b0590505b680ad78ebc5ac6200000841261091f57680ad78ebc5ac62000008403935068056bc75e2d6310000068280e60114edb805d0382028161091b5761091a6117e7565b5b0590505b68056bc75e2d6310000084126109655768056bc75e2d631000008403935068056bc75e2d63100000680ebc5fb41746121110820281610961576109606117e7565b5b0590505b6802b5e3af16b188000084126109ab576802b5e3af16b18800008403935068056bc75e2d631000006808f00f760a4b2db55d8202816109a7576109a66117e7565b5b0590505b68015af1d78b58c4000084126109f15768015af1d78b58c400008403935068056bc75e2d631000006806f5f17757889379378202816109ed576109ec6117e7565b5b0590505b5f68056bc75e2d6310000090505f8590508082019150600268056bc75e2d6310000087830281610a2457610a236117e7565b5b0581610a3357610a326117e7565b5b0590508082019150600368056bc75e2d6310000087830281610a5857610a576117e7565b5b0581610a6757610a666117e7565b5b0590508082019150600468056bc75e2d6310000087830281610a8c57610a8b6117e7565b5b0581610a9b57610a9a6117e7565b5b0590508082019150600568056bc75e2d6310000087830281610ac057610abf6117e7565b5b0581610acf57610ace6117e7565b5b0590508082019150600668056bc75e2d6310000087830281610af457610af36117e7565b5b0581610b0357610b026117e7565b5b0590508082019150600768056bc75e2d6310000087830281610b2857610b276117e7565b5b0581610b3757610b366117e7565b5b0590508082019150600868056bc75e2d6310000087830281610b5c57610b5b6117e7565b5b0581610b6b57610b6a6117e7565b5b0590508082019150600968056bc75e2d6310000087830281610b9057610b8f6117e7565b5b0581610b9f57610b9e6117e7565b5b0590508082019150600a68056bc75e2d6310000087830281610bc457610bc36117e7565b5b0581610bd357610bd26117e7565b5b0590508082019150600b68056bc75e2d6310000087830281610bf857610bf76117e7565b5b0581610c0757610c066117e7565b5b0590508082019150600c68056bc75e2d6310000087830281610c2c57610c2b6117e7565b5b0581610c3b57610c3a6117e7565b5b059050808201915060648468056bc75e2d6310000084860281610c6157610c606117e7565b5b050281610c7157610c706117e7565b5b059450505050505b919050565b5f33905090565b5f670de0b6b3a7640000820291505f6ec097ce7bc90715b34b9f100000000083016ec097ce7bc90715b34b9f10000000008085030281610cc857610cc76117e7565b5b0590505f6ec097ce7bc90715b34b9f100000000082830281610ced57610cec6117e7565b5b0590505f8290505f8190506ec097ce7bc90715b34b9f100000000083830281610d1957610d186117e7565b5b05915060038281610d2d57610d2c6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d5357610d526117e7565b5b05915060058281610d6757610d666117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d8d57610d8c6117e7565b5b05915060078281610da157610da06117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610dc757610dc66117e7565b5b05915060098281610ddb57610dda6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e0157610e006117e7565b5b059150600b8281610e1557610e146117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e3b57610e3a6117e7565b5b059150600d8281610e4f57610e4e6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e7557610e746117e7565b5b059150600f8281610e8957610e886117e7565b5b058101905060028102945050505050919050565b5f670de0b6b3a7640000821215610eda57610ed182670de0b6b3a7640000800281610ecb57610eca6117e7565b5b05610e9d565b5f0390506113de565b5f670de0b6b3a7640000770195e54c5dd42177f53a27172fa9ec630262827000000000028312610f3e57770195e54c5dd42177f53a27172fa9ec6302628270000000008381610f2c57610f2b6117e7565b5b0592506806f05b59d3b2000000810190505b670de0b6b3a76400006b1425982cf597cd205cef7380028312610f89576b1425982cf597cd205cef73808381610f7757610f766117e7565b5b0592506803782dace9d9000000810190505b6064810290506064830292506e01855144814a7ff805980ff00840008312610fe7576e01855144814a7ff805980ff008400068056bc75e2d63100000840281610fd557610fd46117e7565b5b05925068ad78ebc5ac62000000810190505b6b02df0ab5a80a22c61ab5a7008312611033576b02df0ab5a80a22c61ab5a70068056bc75e2d63100000840281611021576110206117e7565b5b0592506856bc75e2d631000000810190505b693f1fce3da636ea5cf850831261107b57693f1fce3da636ea5cf85068056bc75e2d63100000840281611069576110686117e7565b5b059250682b5e3af16b18800000810190505b690127fa27722cc06cc5e283126110c357690127fa27722cc06cc5e268056bc75e2d631000008402816110b1576110b06117e7565b5b0592506815af1d78b58c400000810190505b68280e60114edb805d0383126111095768280e60114edb805d0368056bc75e2d631000008402816110f7576110f66117e7565b5b059250680ad78ebc5ac6200000810190505b680ebc5fb41746121110831261114f57680ebc5fb4174612111068056bc75e2d6310000084028161113d5761113c6117e7565b5b05925068056bc75e2d63100000810190505b6808f00f760a4b2db55d8312611195576808f00f760a4b2db55d68056bc75e2d63100000840281611183576111826117e7565b5b0592506802b5e3af16b1880000810190505b6806f5f177578893793783126111db576806f5f177578893793768056bc75e2d631000008402816111c9576111c86117e7565b5b05925068015af1d78b58c40000810190505b6806248f33704b2866038312611220576806248f33704b28660368056bc75e2d6310000084028161120f5761120e6117e7565b5b05925067ad78ebc5ac620000810190505b6805c548670b9510e7ac8312611265576805c548670b9510e7ac68056bc75e2d63100000840281611254576112536117e7565b5b0592506756bc75e2d6310000810190505b5f68056bc75e2d63100000840168056bc75e2d63100000808603028161128e5761128d6117e7565b5b0590505f68056bc75e2d63100000828302816112ad576112ac6117e7565b5b0590505f8290505f81905068056bc75e2d63100000838302816112d3576112d26117e7565b5b059150600382816112e7576112e66117e7565b5b058101905068056bc75e2d6310000083830281611307576113066117e7565b5b0591506005828161131b5761131a6117e7565b5b058101905068056bc75e2d631000008383028161133b5761133a6117e7565b5b0591506007828161134f5761134e6117e7565b5b058101905068056bc75e2d631000008383028161136f5761136e6117e7565b5b05915060098281611383576113826117e7565b5b058101905068056bc75e2d63100000838302816113a3576113a26117e7565b5b059150600b82816113b7576113b66117e7565b5b05810190506002810290506064818601816113d5576113d46117e7565b5b05955050505050505b919050565b5f81519050919050565b5f82825260208201905092915050565b5f5b8381101561141a5780820151818401526020810190506113ff565b5f8484015250505050565b5f601f19601f8301169050919050565b5f61143f826113e3565b61144981856113ed565b93506114598185602086016113fd565b61146281611425565b840191505092915050565b5f6020820190508181035f8301526114858184611435565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6114b68261148d565b9050919050565b6114c6816114ac565b82525050565b5f6020820190506114df5f8301846114bd565b92915050565b5f604051905090565b5f80fd5b6114fb816114ac565b8114611505575f80fd5b50565b5f81359050611516816114f2565b92915050565b5f60208284031215611531576115306114ee565b5b5f61153e84828501611508565b91505092915050565b5f819050919050565b61155981611547565b8114611563575f80fd5b50565b5f8135905061157481611550565b92915050565b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6115b482611425565b810181811067ffffffffffffffff821117156115d3576115d261157e565b5b80604052505050565b5f6115e56114e5565b90506115f182826115ab565b919050565b5f6060828403121561160b5761160a61157a565b5b61161560606115dc565b90505f61162484828501611566565b5f83015250602061163784828501611566565b602083015250604061164b84828501611566565b60408301525092915050565b5f805f60a0848603121561166e5761166d6114ee565b5b5f61167b86828701611566565b935050602061168c86828701611566565b925050604061169d868287016115f6565b9150509250925092565b6116b081611547565b82525050565b5f6020820190506116c95f8301846116a7565b92915050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f61170e611709611704846116cf565b6116eb565b6116d8565b9050919050565b61171e816116f4565b82525050565b5f6020820190506117375f830184611715565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61177482611547565b915061177f83611547565b92508282039050818111156117975761179661173d565b5b92915050565b5f6117a782611547565b91506117b283611547565b92508282026117c081611547565b915082820484148315176117d7576117d661173d565b5b5092915050565b5f819050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61181e826117de565b9150611829836117de565b925082611839576118386117e7565b5b60015f0383147f8000000000000000000000000000000000000000000000000000000000000000831416156118715761187061173d565b5b828205905092915050565b5f611886826117de565b9150611891836117de565b92508282019050828112155f8312168382125f8412151617156118b7576118b661173d565b5b92915050565b5f6118c7826117de565b91506118d2836117de565b92508282026118e0816117de565b91507f800000000000000000000000000000000000000000000000000000000000000084145f841216156119175761191661173d565b5b828205841483151761192c5761192b61173d565b5b5092915050565b7f6f7574206f6620626f756e6473000000000000000000000000000000000000005f82015250565b5f611967600d836113ed565b915061197282611933565b602082019050919050565b5f6020820190508181035f8301526119948161195b565b9050919050565b7f496e76616c6964206578706f6e656e74000000000000000000000000000000005f82015250565b5f6119cf6010836113ed565b91506119da8261199b565b602082019050919050565b5f6020820190508181035f8301526119fc816119c3565b905091905056fe446973636f756e742063616c63756c61746564207573696e6720746865207a65726f20636f75706f6e20626f6e6420666f726d756c61a264697066735822122019b4a284924dc3862ecea723c60f8550547da392396f287950662652b61661f564736f6c63430008160033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 33 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.