ETH Price: $3,208.74 (-11.95%)

Contract

0xF57Cb671D50535126694Ce5Cc3CeBe3F32794896

Overview

ETH Balance

0.0015 ETH

ETH Value

$4.81 (@ $3,208.74/ETH)

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Safe Mint155437482025-11-04 20:02:395 hrs ago1762286559IN
0xF57Cb671...F32794896
0.0003 ETH0.000001370.00000026
Safe Mint155399542025-11-04 18:59:256 hrs ago1762282765IN
0xF57Cb671...F32794896
0.0003 ETH0.000001390.00000702
Safe Mint155312362025-11-04 16:34:078 hrs ago1762274047IN
0xF57Cb671...F32794896
0.0003 ETH0.000001360.00000026
Safe Mint155311242025-11-04 16:32:158 hrs ago1762273935IN
0xF57Cb671...F32794896
0.0003 ETH0.000001360.00000026
Safe Mint155150232025-11-04 12:03:5413 hrs ago1762257834IN
0xF57Cb671...F32794896
0.0003 ETH0.000001350.00000026
Set Price154198442025-11-03 9:37:3539 hrs ago1762162655IN
0xF57Cb671...F32794896
0 ETH0.000001350.00000026

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Rubyscore_Katana_Badges

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion
File 1 of 31 : Rubyscore_Katana_Badges.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {RubyscoreBadges} from "contracts-forge/base/RubyscoreBadges.sol";

contract Rubyscore_Katana_Badges is RubyscoreBadges {
    string public constant NAME = "RubyScore Badges: Katana";
    string public constant SYMBOL = "RubyScore Badges: Katana";

    constructor(
        address admin,
        address operator,
        address minter,
        string memory baseURI
    ) RubyscoreBadges(admin, operator, minter, baseURI, NAME, SYMBOL) {}
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {IRubyscoreBadges} from "./interfaces/IRubyscoreBadges.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {ERC1155URIStorage} from "@openzeppelin/contracts/token/ERC1155/extensions/ERC1155URIStorage.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {ERC1155, ERC1155Supply} from "@openzeppelin/contracts/token/ERC1155/extensions/ERC1155Supply.sol";

/**
 * @title RubyscoreBadges
 * @dev An ERC1155 token contract for minting and managing badges with URI support.
 * @dev RubyscoreBadges can be minted by users with the MINTER_ROLE after proper authorization.
 * @dev RubyscoreBadges can have their URIs set by operators with the MINTER_ROLE.
 * @dev RubyscoreBadges can be safely transferred with restrictions on certain tokens.
 */
contract RubyscoreBadges is
    ERC1155,
    EIP712,
    AccessControl,
    ERC1155Supply,
    ERC1155URIStorage,
    ReentrancyGuard,
    IRubyscoreBadges
{
    bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
    bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
    string public constant VERSION = "0.0.1";

    uint256 private price;

    string public name;
    string public symbol;

    mapping(uint256 => bool) private transferUnlock;
    mapping(address => uint256) private userNonce;

    /**
     * @dev See {RubyscoreBadges}
     */
    function supportsInterface(
        bytes4 interfaceId
    ) public view override(ERC1155, AccessControl, IRubyscoreBadges) returns (bool) {
        return super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function uri(
        uint256 tokenId
    ) public view override(ERC1155, ERC1155URIStorage, IRubyscoreBadges) returns (string memory) {
        return super.uri(tokenId);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function getTransferStatus(uint256 tokenId) external view returns (bool) {
        return transferUnlock[tokenId];
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function getPrice() external view returns (uint256) {
        return price;
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function getUserNonce(address userAddress) external view returns (uint256) {
        return userNonce[userAddress];
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function tokenURI(uint256 tokenId) public view returns (string memory) {
        return uri(tokenId);
    }

    //TODO: use ERC1155("https://xproject.api/achivments/") like error URI and set new for ERC1155URIStorage

    /**
     * @notice Constructor for the RubyscoreBadges contract.
     * @dev Initializes the contract with roles and settings.
     * @param admin The address of the admin role, which has overall control.
     * @param operator The address of the operator role, responsible for unlock tokens and set base URI.
     * @param minter The address of the minter role, authorized to mint badges and responsible for setting token URIs.
     * @param baseURI The base URI for token metadata.
     * @dev It sets the base URI for token metadata to the provided `baseURI`.
     * @dev It grants the DEFAULT_ADMIN_ROLE, OPERATOR_ROLE, and MINTER_ROLE to the specified addresses.
     * @dev It also initializes the contract with EIP712 support and ERC1155 functionality.
     */
    constructor(
        address admin,
        address operator,
        address minter,
        string memory baseURI,
        string memory _name,
        string memory _symbol
    ) ERC1155("ipfs://") EIP712(_name, VERSION) {
        require(admin != address(0), "Zero address check");
        require(operator != address(0), "Zero address check");
        require(minter != address(0), "Zero address check");
        name = _name;
        symbol = _symbol;
        _grantRole(DEFAULT_ADMIN_ROLE, admin);
        _grantRole(OPERATOR_ROLE, msg.sender);
        _grantRole(OPERATOR_ROLE, operator);
        _grantRole(MINTER_ROLE, minter);
        _setBaseURI(baseURI);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function setTokenURI(uint256 tokenId, string memory newTokenURI) public onlyRole(MINTER_ROLE) {
        super._setURI(tokenId, newTokenURI);
        emit TokenURISet(tokenId, newTokenURI);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function setBatchTokenURI(
        uint256[] calldata tokenIds,
        string[] calldata newTokenURIs
    ) external onlyRole(MINTER_ROLE) {
        require(tokenIds.length == newTokenURIs.length, "Invalid params");
        for (uint256 i = 0; i < tokenIds.length; i++) {
            setTokenURI(tokenIds[i], newTokenURIs[i]);
        }
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function setBaseURI(string memory newBaseURI) external onlyRole(OPERATOR_ROLE) {
        super._setBaseURI(newBaseURI);
        emit BaseURISet(newBaseURI);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function setPrice(uint256 newPrice) external onlyRole(OPERATOR_ROLE) {
        price = newPrice;
        emit PriceUpdated(newPrice);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function safeMint(MintParams memory mintParams, bytes calldata operatorSignature) external payable nonReentrant {
        require(mintParams.nftIds.length >= 1, "Invalid NFT ids");
        require(msg.value == price, "Wrong payment amount");
        bytes32 digest = _hashTypedDataV4(
            keccak256(
                abi.encode(
                    keccak256("MintParams(address userAddress,uint256 userNonce,uint256[] nftIds)"),
                    msg.sender,
                    userNonce[msg.sender],
                    keccak256(abi.encodePacked(mintParams.nftIds))
                )
            )
        );
        _checkRole(MINTER_ROLE, ECDSA.recover(digest, operatorSignature));
        userNonce[mintParams.userAddress] += 1;
        if (mintParams.nftIds.length > 1) _mintBatch(mintParams.userAddress, mintParams.nftIds, "");
        else _mint(mintParams.userAddress, mintParams.nftIds[0], "");
        emit Minted(mintParams.userAddress, mintParams.userNonce, mintParams.nftIds);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function setTransferUnlock(uint256 tokenId, bool lock) external onlyRole(OPERATOR_ROLE) {
        transferUnlock[tokenId] = lock;
        emit TokenUnlockSet(tokenId, lock);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function withdraw() external onlyRole(DEFAULT_ADMIN_ROLE) {
        uint256 amount = address(this).balance;
        require(amount > 0, "Zero amount to withdraw");
        (bool sent, ) = payable(msg.sender).call{value: amount}("");
        require(sent, "Failed to send Ether");
        emit Withdrawed(amount);
    }

    /**
     * @dev See {RubyscoreBadges}
     */
    function _mint(address to, uint256 id, bytes memory data) internal {
        require(balanceOf(to, id) == 0, "You already have this badge");
        super._mint(to, id, 1, data);
    }

    /**
     * @notice Internal function to safely mint multiple NFTs in a batch for a specified recipient.
     * @param to The address of the recipient to mint the NFTs for.
     * @param ids An array of NFT IDs to mint.
     * @param data Additional data to include in the minting transaction.
     * @dev This function checks if the recipient already owns any of the specified NFTs to prevent duplicates.
     * @dev It is intended for batch minting operations where multiple NFTs can be minted at once.
     */
    function _mintBatch(address to, uint256[] memory ids, bytes memory data) internal {
        uint256[] memory amounts = new uint256[](ids.length);
        for (uint8 i = 0; i < ids.length; i++) {
            require(balanceOf(to, ids[i]) == 0, "You already have this badge"); // TODO: custom error with problem token id
            amounts[i] = 1;
        }
        super._mintBatch(to, ids, amounts, data);
    }

    // The following functions are overrides required by Solidity.

    function _update(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values
    ) internal override(ERC1155, ERC1155Supply) {
        for (uint256 i = 0; i < ids.length; i++) {
            if (!transferUnlock[ids[i]] && from != address(0)) revert("This token only for you");
        }
        super._update(from, to, ids, values);
    }
}

// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.28;

import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";

/**
 * @title IRubyscoreBadges
 * @dev IRubyscoreBadges is an interface for RubyscoreBadges contract
 */
interface IRubyscoreBadges is IERC1155 {
    struct MintParams {
        address userAddress; // Address of the buyer.
        uint256 userNonce; // Nonce associated with the user's address for preventing replay attacks.
        uint256[] nftIds; // ids of NFTs to mint
    }

    /**
     * @notice Emitted when the base URI for token metadata is updated.
     * @param newBaseURI The new base URI that will be used to construct token metadata URIs.
     * @dev This event is triggered when the contract operator updates the base URI
     * for retrieving metadata associated with tokens. The 'newBaseURI' parameter represents
     * the updated base URI.
     */
    event BaseURISet(string indexed newBaseURI);

    /**
     * @notice Emitted when NFTs are minted for a user.
     * @param userAddress The address of the user receiving the NFTs.
     * @param userNonce The user's nonce used to prevent replay attacks.
     * @param nftIds An array of NFT IDs that were minted.
     * @dev This event is emitted when new NFTs are created and assigned to a user.
     * @dev It includes the user's address, nonce, and the IDs of the minted NFTs for transparency.
     */
    event Minted(address indexed userAddress, uint256 indexed userNonce, uint256[] nftIds);

    /**
     * @notice Emitted when the URI for a specific token is updated.
     * @param tokenId The ID of the token for which the URI is updated.
     * @param newTokenURI The new URI assigned to the token.
     * @dev This event is emitted when the URI for a token is modified, providing transparency
     * when metadata URIs are changed for specific tokens.
     */
    event TokenURISet(uint256 indexed tokenId, string indexed newTokenURI);

    /**
     * @notice Emitted when the transfer lock status for a token is updated.
     * @param tokenId The ID of the token for which the transfer lock status changes.
     * @param lock The new transfer lock status (true for locked, false for unlocked).
     * @dev This event is emitted when the transfer lock status of a specific token is modified.
     * @dev It provides transparency regarding whether a token can be transferred or not.
     */
    event TokenUnlockSet(uint256 indexed tokenId, bool indexed lock);

    /**
     * @notice Emitted when the price for a token mint is updated.
     * @param newPrice The new price for mint.
     * @dev This event is emitted when the price for mint a token is modified.
     */
    event PriceUpdated(uint256 newPrice);

    /**
     * @notice Get token name.
     * @return Token name.
     */
    function name() external view returns (string memory);

    /**
     * @notice Get token symbol.
     * @return Token symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @notice Get the URI of a token.
     * @param tokenId The ID of the token.
     * @return The URI of the token.
     */
    function uri(uint256 tokenId) external view returns (string memory);

    /**
     * @notice Get the transfer status of a token.
     * @param tokenId The ID of the token.
     * @return Whether the token's transfer is unlocked (true) or restricted (false).
     */
    function getTransferStatus(uint256 tokenId) external view returns (bool);

    /**
     * @notice Get the user's nonce associated with their address.
     * @param userAddress The address of the user.
     * @return The user's nonce.
     */
    function getUserNonce(address userAddress) external view returns (uint256);

    /**
     * @notice Get the token URI for a given tokenId.
     * @param tokenId The ID of the token.
     * @return The URI of the token.
     * @dev Duplicate for uri() method
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    /**
     * @notice Set the URI for a token.
     * @param tokenId The ID of the token.
     * @param newTokenURI The new URI to set for the token.
     * @dev Requires the MINTER_ROLE.
     */
    function setTokenURI(uint256 tokenId, string memory newTokenURI) external;

    /**
     * @notice Set the URIs for multiple tokens in a batch.
     * @param tokenIds An array of token IDs to set URIs for.
     * @param newTokenURIs An array of new URIs to set for the tokens.
     * @dev Requires the MINTER_ROLE.
     * @dev Requires that the tokenIds and newTokenURIs arrays have the same length.
     */
    function setBatchTokenURI(uint256[] calldata tokenIds, string[] calldata newTokenURIs) external;

    /**
     * @notice Set the base URI for all tokens.
     * @param newBaseURI The new base URI to set.
     * @dev Requires the OPERATOR_ROLE.
     */
    function setBaseURI(string memory newBaseURI) external;

    /**
     * @notice Safely mints NFTs for a user based on provided parameters and a valid minter signature.
     * @param mintParams The struct containing user address, user nonce, and NFT IDs to mint.
     * @param operatorSignature The ECDSA signature of the data, validating the operator's role.
     * @dev This function safely mints NFTs for a user while ensuring the validity of the operator's signature.
     * @dev It requires that the provided NFT IDs are valid and that the operator has the MINTER_ROLE.
     * @dev User nonces are used to prevent replay attacks.
     * @dev Multiple NFTs can be minted in a batch or a single NFT can be minted based on the number of NFT IDs provided.
     * @dev Emits the 'Minted' event to indicate the successful minting of NFTs.
     */
    function safeMint(MintParams memory mintParams, bytes calldata operatorSignature) external payable;

    event Withdrawed(uint256 amount);

    /**
     * @notice Sets the transfer lock status for a specific token ID.
     * @param tokenId The ID of the token to set the transfer lock status for.
     * @param lock The boolean value to determine whether transfers of this token are locked or unlocked.
     * @dev This function can only be called by an operator with the OPERATOR_ROLE.
     * @dev It allows operators to control the transferability of specific tokens.
     * @dev Emits the 'tokenUnlockSet' event to indicate the change in transfer lock status.
     */
    function setTransferUnlock(uint256 tokenId, bool lock) external;

    /**
     * @notice Check if a given interface is supported by this contract.
     * @param interfaceId The interface identifier to check for support.
     * @return Whether the contract supports the specified interface.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    function withdraw() external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/ERC1155URIStorage.sol)

pragma solidity ^0.8.20;

import {Strings} from "../../../utils/Strings.sol";
import {ERC1155} from "../ERC1155.sol";

/**
 * @dev ERC-1155 token with storage based token URI management.
 * Inspired by the {ERC721URIStorage} extension
 */
abstract contract ERC1155URIStorage is ERC1155 {
    using Strings for uint256;

    // Optional base URI
    string private _baseURI = "";

    // Optional mapping for token URIs
    mapping(uint256 tokenId => string) private _tokenURIs;

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the concatenation of the `_baseURI`
     * and the token-specific uri if the latter is set
     *
     * This enables the following behaviors:
     *
     * - if `_tokenURIs[tokenId]` is set, then the result is the concatenation
     *   of `_baseURI` and `_tokenURIs[tokenId]` (keep in mind that `_baseURI`
     *   is empty per default);
     *
     * - if `_tokenURIs[tokenId]` is NOT set then we fallback to `super.uri()`
     *   which in most cases will contain `ERC1155._uri`;
     *
     * - if `_tokenURIs[tokenId]` is NOT set, and if the parents do not have a
     *   uri value set, then the result is empty.
     */
    function uri(uint256 tokenId) public view virtual override returns (string memory) {
        string memory tokenURI = _tokenURIs[tokenId];

        // If token URI is set, concatenate base URI and tokenURI (via string.concat).
        return bytes(tokenURI).length > 0 ? string.concat(_baseURI, tokenURI) : super.uri(tokenId);
    }

    /**
     * @dev Sets `tokenURI` as the tokenURI of `tokenId`.
     */
    function _setURI(uint256 tokenId, string memory tokenURI) internal virtual {
        _tokenURIs[tokenId] = tokenURI;
        emit URI(uri(tokenId), tokenId);
    }

    /**
     * @dev Sets `baseURI` as the `_baseURI` for all tokens
     */
    function _setBaseURI(string memory baseURI) internal virtual {
        _baseURI = baseURI;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/ERC1155Supply.sol)

pragma solidity ^0.8.20;

import {ERC1155} from "../ERC1155.sol";
import {Arrays} from "../../../utils/Arrays.sol";

/**
 * @dev Extension of ERC-1155 that adds tracking of total supply per id.
 *
 * Useful for scenarios where Fungible and Non-fungible tokens have to be
 * clearly identified. Note: While a totalSupply of 1 might mean the
 * corresponding is an NFT, there is no guarantees that no other token with the
 * same id are not going to be minted.
 *
 * NOTE: This contract implies a global limit of 2**256 - 1 to the number of tokens
 * that can be minted.
 *
 * CAUTION: This extension should not be added in an upgrade to an already deployed contract.
 */
abstract contract ERC1155Supply is ERC1155 {
    using Arrays for uint256[];

    mapping(uint256 id => uint256) private _totalSupply;
    uint256 private _totalSupplyAll;

    /**
     * @dev Total value of tokens in with a given id.
     */
    function totalSupply(uint256 id) public view virtual returns (uint256) {
        return _totalSupply[id];
    }

    /**
     * @dev Total value of tokens.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupplyAll;
    }

    /**
     * @dev Indicates whether any token exist with a given id, or not.
     */
    function exists(uint256 id) public view virtual returns (bool) {
        return totalSupply(id) > 0;
    }

    /**
     * @dev See {ERC1155-_update}.
     */
    function _update(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values
    ) internal virtual override {
        super._update(from, to, ids, values);

        if (from == address(0)) {
            uint256 totalMintValue = 0;
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 value = values.unsafeMemoryAccess(i);
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                _totalSupply[ids.unsafeMemoryAccess(i)] += value;
                totalMintValue += value;
            }
            // Overflow check required: The rest of the code assumes that totalSupplyAll never overflows
            _totalSupplyAll += totalMintValue;
        }

        if (to == address(0)) {
            uint256 totalBurnValue = 0;
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 value = values.unsafeMemoryAccess(i);

                unchecked {
                    // Overflow not possible: values[i] <= balanceOf(from, ids[i]) <= totalSupply(ids[i])
                    _totalSupply[ids.unsafeMemoryAccess(i)] -= value;
                    // Overflow not possible: sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
                    totalBurnValue += value;
                }
            }
            unchecked {
                // Overflow not possible: totalBurnValue = sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
                _totalSupplyAll -= totalBurnValue;
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {IERC1155Receiver-onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {IERC1155Receiver-onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 13 of 31 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the basic standard multi-token.
 * See https://eips.ethereum.org/EIPS/eip-1155
 * Originally based on code by Enjin: https://github.com/enjin/erc-1155
 */
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
    using Arrays for uint256[];
    using Arrays for address[];

    mapping(uint256 id => mapping(address account => uint256)) private _balances;

    mapping(address account => mapping(address operator => bool)) private _operatorApprovals;

    // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
    string private _uri;

    /**
     * @dev See {_setURI}.
     */
    constructor(string memory uri_) {
        _setURI(uri_);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC1155).interfaceId ||
            interfaceId == type(IERC1155MetadataURI).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the same URI for *all* token types. It relies
     * on the token type ID substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * Clients calling this function must replace the `\{id\}` substring with the
     * actual token type ID.
     */
    function uri(uint256 /* id */) public view virtual returns (string memory) {
        return _uri;
    }

    /**
     * @dev See {IERC1155-balanceOf}.
     */
    function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
        return _balances[id][account];
    }

    /**
     * @dev See {IERC1155-balanceOfBatch}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] memory accounts,
        uint256[] memory ids
    ) public view virtual returns (uint256[] memory) {
        if (accounts.length != ids.length) {
            revert ERC1155InvalidArrayLength(ids.length, accounts.length);
        }

        uint256[] memory batchBalances = new uint256[](accounts.length);

        for (uint256 i = 0; i < accounts.length; ++i) {
            batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
        }

        return batchBalances;
    }

    /**
     * @dev See {IERC1155-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC1155-isApprovedForAll}.
     */
    function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
        return _operatorApprovals[account][operator];
    }

    /**
     * @dev See {IERC1155-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeTransferFrom(from, to, id, value, data);
    }

    /**
     * @dev See {IERC1155-safeBatchTransferFrom}.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeBatchTransferFrom(from, to, ids, values, data);
    }

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
     * (or `to`) is the zero address.
     *
     * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
     *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
     * - `ids` and `values` must have the same length.
     *
     * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
     */
    function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
        if (ids.length != values.length) {
            revert ERC1155InvalidArrayLength(ids.length, values.length);
        }

        address operator = _msgSender();

        for (uint256 i = 0; i < ids.length; ++i) {
            uint256 id = ids.unsafeMemoryAccess(i);
            uint256 value = values.unsafeMemoryAccess(i);

            if (from != address(0)) {
                uint256 fromBalance = _balances[id][from];
                if (fromBalance < value) {
                    revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance
                    _balances[id][from] = fromBalance - value;
                }
            }

            if (to != address(0)) {
                _balances[id][to] += value;
            }
        }

        if (ids.length == 1) {
            uint256 id = ids.unsafeMemoryAccess(0);
            uint256 value = values.unsafeMemoryAccess(0);
            emit TransferSingle(operator, from, to, id, value);
        } else {
            emit TransferBatch(operator, from, to, ids, values);
        }
    }

    /**
     * @dev Version of {_update} that performs the token acceptance check by calling
     * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
     * contains code (eg. is a smart contract at the moment of execution).
     *
     * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
     * update to the contract state after this function would break the check-effect-interaction pattern. Consider
     * overriding {_update} instead.
     */
    function _updateWithAcceptanceCheck(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal virtual {
        _update(from, to, ids, values);
        if (to != address(0)) {
            address operator = _msgSender();
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
            } else {
                ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
            }
        }
    }

    /**
     * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     * - `ids` and `values` must have the same length.
     */
    function _safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev Sets a new URI for all token types, by relying on the token type ID
     * substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * By this mechanism, any occurrence of the `\{id\}` substring in either the
     * URI or any of the values in the JSON file at said URI will be replaced by
     * clients with the token type ID.
     *
     * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
     * interpreted by clients as
     * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
     * for token type ID 0x4cce0.
     *
     * See {uri}.
     *
     * Because these URIs cannot be meaningfully represented by the {URI} event,
     * this function emits no events.
     */
    function _setURI(string memory newuri) internal virtual {
        _uri = newuri;
    }

    /**
     * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev Destroys a `value` amount of tokens of type `id` from `from`
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     */
    function _burn(address from, uint256 id, uint256 value) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     * - `ids` and `values` must have the same length.
     */
    function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC1155InvalidOperator(address(0));
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Creates an array in memory with only one value for each of the elements provided.
     */
    function _asSingletonArrays(
        uint256 element1,
        uint256 element2
    ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
        assembly ("memory-safe") {
            // Load the free memory pointer
            array1 := mload(0x40)
            // Set array length to 1
            mstore(array1, 1)
            // Store the single element at the next word after the length (where content starts)
            mstore(add(array1, 0x20), element1)

            // Repeat for next array locating it right after the first array
            array2 := add(array1, 0x40)
            mstore(array2, 1)
            mstore(add(array2, 0x20), element2)

            // Update the free memory pointer by pointing after the second array
            mstore(0x40, add(array2, 0x40))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 19 of 31 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 22 of 31 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 23 of 31 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/utils/ERC1155Utils.sol)

pragma solidity ^0.8.20;

import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-1155 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
 *
 * _Available since v5.1._
 */
library ERC1155Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155Received(
        address operator,
        address from,
        address to,
        uint256 id,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                if (response != IERC1155Receiver.onERC1155Received.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }

    /**
     * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155BatchReceived}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155BatchReceived(
        address operator,
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                bytes4 response
            ) {
                if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

Settings
{
  "remappings": [
    "@openzeppelin/=node_modules/@openzeppelin/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat-deploy/=node_modules/hardhat-deploy/",
    "hardhat/=node_modules/hardhat/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"minter","type":"address"},{"internalType":"string","name":"baseURI","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"string","name":"newBaseURI","type":"string"}],"name":"BaseURISet","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"userAddress","type":"address"},{"indexed":true,"internalType":"uint256","name":"userNonce","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"PriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"string","name":"newTokenURI","type":"string"}],"name":"TokenURISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"bool","name":"lock","type":"bool"}],"name":"TokenUnlockSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawed","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NAME","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SYMBOL","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getTransferStatus","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"userAddress","type":"address"}],"name":"getUserNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"userAddress","type":"address"},{"internalType":"uint256","name":"userNonce","type":"uint256"},{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"internalType":"struct IRubyscoreBadges.MintParams","name":"mintParams","type":"tuple"},{"internalType":"bytes","name":"operatorSignature","type":"bytes"}],"name":"safeMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"string[]","name":"newTokenURIs","type":"string[]"}],"name":"setBatchTokenURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"string","name":"newTokenURI","type":"string"}],"name":"setTokenURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bool","name":"lock","type":"bool"}],"name":"setTransferUnlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

61016080604052346105ed5761383b803803809161001d82856105f1565b83398101906080818303126105ed5761003581610614565b9061004260208201610614565b9061004f60408201610614565b606082015190916001600160401b0382116105ed570184601f820112156105ed578051906001600160401b0382116104305760405195610099601f8401601f1916602001886105f1565b828752602083830101116105ed57815f9260208093018389015e860101526100bf610628565b916100c8610628565b936040948551946100d987876105f1565b60058652602086019564302e302e3160d81b8752602088516100fb8a826105f1565b60078152019666697066733a2f2f60c81b88526101196002546106a4565b601f81116105af575b5096516001600160c81b031916600e17600255602096610141836108c8565b6101205261014e82610a04565b61014052825188840120918260e05251902080610100524660a052885190888201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f84528a83015260608201524660808201523060a082015260a081526101b760c0826105f1565b5190206080523060c0526101cc6008546106a4565b601f811161058f575b505f6008556001600a556101f36001600160a01b0384161515610663565b6102076001600160a01b0385161515610663565b61021b6001600160a01b0386161515610663565b8051906001600160401b038211610430578190610239600c546106a4565b601f8111610560575b508790601f83116001146104fa575f926104ef575b50508160011b915f199060031b1c191617600c555b8051906001600160401b03821161043057610288600d546106a4565b601f81116104c0575b508590601f831160011461044f5792826102e59695936102cf936102df965f92610444575b50508160011b915f199060031b1c191617600d5561072c565b506102d9336107a2565b506107a2565b50610835565b508251906001600160401b038211610430576103026008546106a4565b601f81116103f6575b5080601f831160011461039257508192935f92610387575b50508160011b915f199060031b1c1916176008555b51612cc99081610af282396080518161238c015260a05181612449015260c05181612356015260e051816123db0152610100518161240101526101205181610ea601526101405181610ed20152f35b015190505f80610323565b90601f1983169460085f52825f20925f905b8782106103de5750508360019596106103c6575b505050811b01600855610338565b01515f1960f88460031b161c191690555f80806103b8565b806001859682949686015181550195019301906103a4565b6104209060085f52825f20601f850160051c810191848610610426575b601f0160051c01906106dc565b5f61030b565b9091508190610413565b634e487b7160e01b5f52604160045260245ffd5b015190505f806102b6565b90601f19831691600d5f52875f20925f5b898282106104aa575050936102cf936102df9693600193836102e59b9a9810610492575b505050811b01600d5561072c565b01515f1960f88460031b161c191690555f8080610484565b6001859682939686015181550195019301610460565b6104e990600d5f52875f20601f850160051c81019189861061042657601f0160051c01906106dc565b5f610291565b015190505f80610257565b600c5f9081528981209350601f198516905b8a82821061054a575050908460019594939210610532575b505050811b01600c5561026c565b01515f1960f88460031b161c191690555f8080610524565b600185968293968601518155019501930161050c565b61058990600c5f52895f20601f850160051c8101918b861061042657601f0160051c01906106dc565b5f610242565b6105a99060085f52601f885f20910160051c8101906106dc565b5f6101d5565b60025f526105e790601f0160051c7f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace908101906106dc565b5f610122565b5f80fd5b601f909101601f19168101906001600160401b0382119082101761043057604052565b51906001600160a01b03821682036105ed57565b604051906106376040836105f1565b601882527f5275627953636f7265204261646765733a204b6174616e6100000000000000006020830152565b1561066a57565b60405162461bcd60e51b81526020600482015260126024820152715a65726f206164647265737320636865636b60701b6044820152606490fd5b90600182811c921680156106d2575b60208310146106be57565b634e487b7160e01b5f52602260045260245ffd5b91607f16916106b3565b8181106106e7575050565b5f81556001016106dc565b9190601f811161070157505050565b61072a925f5260205f20906020601f840160051c8301931061042657601f0160051c01906106dc565b565b6001600160a01b0381165f9081525f51602061381b5f395f51905f52602052604090205460ff1661079d576001600160a01b03165f8181525f51602061381b5f395f51905f5260205260408120805460ff191660011790553391905f5160206137bb5f395f51905f528180a4600190565b505f90565b6001600160a01b0381165f9081525f5160206137fb5f395f51905f52602052604090205460ff1661079d576001600160a01b03165f8181525f5160206137fb5f395f51905f5260205260408120805460ff191660011790553391907f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929905f5160206137bb5f395f51905f529080a4600190565b6001600160a01b0381165f9081525f5160206137db5f395f51905f52602052604090205460ff1661079d576001600160a01b03165f8181525f5160206137db5f395f51905f5260205260408120805460ff191660011790553391907f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6905f5160206137bb5f395f51905f529080a4600190565b908151602081105f14610942575090601f8151116109025760208151910151602082106108f3571790565b5f198260200360031b1b161790565b604460209160405192839163305a27a960e01b83528160048401528051918291826024860152018484015e5f828201840152601f01601f19168101030190fd5b6001600160401b038111610430576109668161095f6003546106a4565b60036106f2565b602092601f82116001146109a357928192935f92610998575b50508160011b915f199060031b1c19161760035560ff90565b015190505f8061097f565b601f1982169360035f52805f20915f5b8681106109ec57508360019596106109d4575b505050811b0160035560ff90565b01515f1960f88460031b161c191690555f80806109c6565b919260206001819286850151815501940192016109b3565b908151602081105f14610a2f575090601f8151116109025760208151910151602082106108f3571790565b6001600160401b03811161043057610a5381610a4c6004546106a4565b60046106f2565b602092601f8211600114610a9057928192935f92610a85575b50508160011b915f199060031b1c19161760045560ff90565b015190505f80610a6c565b601f1982169360045f52805f20915f5b868110610ad95750836001959610610ac1575b505050811b0160045560ff90565b01515f1960f88460031b161c191690555f8080610ab3565b91926020600181928685015181550194019201610aa056fe60806040526004361015610011575f80fd5b5f3560e01c8062fdd58e1461024957806301ffc9a71461024457806306fdde031461023f5780630e89341c146101c7578063162094c41461023a57806318160ddd14610235578063248a9ca3146102305780632eb2c2d61461022b5780632f2ff15d1461022657806336568abe146102215780633ccfd60b1461021c5780634e1273f4146102175780634f558e791461021257806355f804b31461020d5780636834e3a8146102085780637c2ccc451461020357806384b0196e146101fe57806391b7f5ed146101f957806391d14854146101f457806395d89b41146101ef57806398d5fdca146101ea5780639b3e5573146101e5578063a217fddf146101e0578063a22cb465146101db578063a3f4df7e146101a9578063b93c3770146101d6578063ba772d8b146101d1578063bd85b039146101cc578063c87b56dd146101c7578063d5391393146101c2578063d547741f146101bd578063e985e9c5146101b8578063f242432a146101b3578063f5b541a6146101ae578063f76f8d78146101a95763ffa1ad74146101a4575f80fd5b6115c4565b611206565b61158a565b611484565b611434565b6113f6565b6113bc565b610669565b611392565b6112c4565b611265565b611144565b61112a565b6110bb565b61108f565b610fea565b610f9b565b610f4e565b610e8e565b610ded565b610d88565b610c3e565b610c12565b610b53565b610a57565b610a13565b6109ce565b610942565b61089b565b61087e565b610708565b61058f565b6102ec565b610292565b600435906001600160a01b038216820361026457565b5f80fd5b602435906001600160a01b038216820361026457565b35906001600160a01b038216820361026457565b346102645760403660031901126102645760206102d16102b061024e565b6024355f525f835260405f209060018060a01b03165f5260205260405f2090565b54604051908152f35b6001600160e01b031981160361026457565b3461026457602036600319011261026457600435610309816102da565b63ffffffff60e01b16637965db0b60e01b8114908115610332575b506040519015158152602090f35b636cdb3d1360e11b811491508115610364575b8115610353575b505f610324565b6301ffc9a760e01b1490505f61034c565b6303a24d0760e21b81149150610345565b90600182811c921680156103a3575b602083101461038f57565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610384565b634e487b7160e01b5f52604160045260245ffd5b606081019081106001600160401b038211176103dc57604052565b6103ad565b90601f801991011681019081106001600160401b038211176103dc57604052565b604051905f826002549161041583610375565b808352926001811690811561049a575060011461043b575b610439925003836103e1565b565b5060025f90815290917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b81831061047e5750509060206104399282010161042d565b6020919350806001915483858901015201910190918492610466565b6020925061043994915060ff191682840152151560051b82010161042d565b9060405191825f8254926104cc84610375565b808452936001811690811561053557506001146104f1575b50610439925003836103e1565b90505f9291925260205f20905f915b818310610519575050906020610439928201015f6104e4565b6020919350806001915483858901015201910190918492610500565b90506020925061043994915060ff191682840152151560051b8201015f6104e4565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b90602061058c928181520190610557565b90565b34610264575f366003190112610264576040515f600c546105af81610375565b808452906001811690811561064557506001146105e7575b6105e3836105d7818503826103e1565b6040519182918261057b565b0390f35b600c5f9081527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7939250905b80821061062b575090915081016020016105d76105c7565b919260018160209254838588010152019101909291610613565b60ff191660208086019190915291151560051b840190910191506105d790506105c7565b34610264576020366003190112610264576105e3610688600435611bea565b604051918291602083526020830190610557565b6001600160401b0381116103dc57601f01601f191660200190565b9291926106c38261069c565b916106d160405193846103e1565b829481845281830111610264578281602093845f960137010152565b9080601f830112156102645781602061058c933591016106b7565b34610264576040366003190112610264576004356024356001600160401b0381116102645761073b9036906004016106ed565b9061074533611eb5565b805f52600960205260405f20918051926001600160401b0384116103dc57610777846107718354610375565b83611d12565b602093601f811160011461081457806107a9916107e295965f91610809575b508160011b915f199060031b1c19161790565b90555b827f6bb7ff708619ba0610cba295a58592e0451dee2622938c8755667688daf3529b6107da6105d783611bea565b0390a2611702565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3005b90508401515f610796565b601f198116610826835f5260205f2090565b905f5b8181106108665750906107e2959683600194931061084e575b5050811b0190556107ac565b8501515f1960f88460031b161c191690555f80610842565b85880151835560209788019760019093019201610829565b34610264575f366003190112610264576020600754604051908152f35b346102645760203660031901126102645760206108c66004355f526005602052600160405f20015490565b604051908152f35b6001600160401b0381116103dc5760051b60200190565b9080601f830112156102645781356108fc816108ce565b9261090a60405194856103e1565b81845260208085019260051b82010192831161026457602001905b8282106109325750505090565b8135815260209182019101610925565b346102645760a03660031901126102645761095b61024e565b610963610268565b906044356001600160401b038111610264576109839036906004016108e5565b6064356001600160401b038111610264576109a29036906004016108e5565b90608435936001600160401b038511610264576109c66109cc9536906004016106ed565b93611718565b005b34610264576040366003190112610264576109cc6004356109ed610268565b90610a0e610a07825f526005602052600160405f20015490565b3390612021565b611d61565b3461026457604036600319011261026457600435610a2f610268565b336001600160a01b03821603610a48576109cc91611df1565b63334bd91960e11b5f5260045ffd5b34610264575f36600319011261026457610a7033611f3b565b478015610aca57610ac581610ab55f8080807f11e9d9f7a772129e26cb0560945658c96b41c42ac6712d233e20c894bfcd00fd97335af1610aaf611774565b506117a3565b6040519081529081906020820190565b0390a1005b60405162461bcd60e51b815260206004820152601760248201527f5a65726f20616d6f756e7420746f2077697468647261770000000000000000006044820152606490fd5b90602080835192838152019201905f5b818110610b2c5750505090565b8251845260209384019390920191600101610b1f565b90602061058c928181520190610b0f565b34610264576040366003190112610264576004356001600160401b038111610264573660238201121561026457806004013590610b8f826108ce565b91610b9d60405193846103e1565b8083526024602084019160051b8301019136831161026457602401905b828210610bfa57836024356001600160401b038111610264576105e391610be8610bee9236906004016108e5565b9061186d565b60405191829182610b42565b60208091610c078461027e565b815201910190610bba565b34610264576020366003190112610264576004355f526006602052602060405f20541515604051908152f35b34610264576020366003190112610264576004356001600160401b03811161026457610c6e9036906004016106ed565b610c7733611f9b565b80516001600160401b0381116103dc57610c9b81610c96600854610375565b611cc2565b6020601f8211600114610d045781610cd39392610ccb925f91610cf957508160011b915f199060031b1c19161790565b600855611702565b7ff9c7803e94e0d3c02900d8a90893a6d5e90dd04d32a4cfe825520f82bf9f32f65f80a2005b90508301515f610796565b60085f52601f198216907ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3915f5b818110610d705750918391610cd3959460019410610d58575b5050811b01600855611702565b8401515f1960f88460031b161c191690555f80610d4b565b91926020600181928689015181550194019201610d32565b34610264576020366003190112610264576001600160a01b03610da961024e565b165f52600f602052602060405f2054604051908152f35b9181601f84011215610264578235916001600160401b038311610264576020838186019501011161026457565b6040366003190112610264576004356001600160401b03811161026457606060031982360301126102645760405190610e25826103c1565b610e318160040161027e565b8252602481013560208301526044810135906001600160401b038211610264576004610e6092369201016108e5565b6040820152602435906001600160401b03821161026457610e886109cc923690600401610dc0565b916118fc565b34610264575f36600319011261026457610f20610eca7f0000000000000000000000000000000000000000000000000000000000000000612543565b6105e3610ef67f0000000000000000000000000000000000000000000000000000000000000000612608565b610f2e610f016117e6565b91604051958695600f60f81b875260e0602088015260e0870190610557565b908582036040870152610557565b904660608501523060808501525f60a085015283820360c0850152610b0f565b34610264576020366003190112610264577f66cbca4f3c64fecf1dcb9ce094abcf7f68c3450a1d4e3a8e917dd621edb4ebe06020600435610f8e33611f9b565b80600b55604051908152a1005b3461026457604036600319011261026457602060ff610fde600435610fbe610268565b905f526005845260405f209060018060a01b03165f5260205260405f2090565b54166040519015158152f35b34610264575f366003190112610264576040515f600d5461100a81610375565b80845290600181169081156106455750600114611031576105e3836105d7818503826103e1565b600d5f9081527fd7b6990105719101dabeb77144f2a3385c8033acd3af97e9423a695e81ad1eb5939250905b808210611075575090915081016020016105d76105c7565b91926001816020925483858801015201910190929161105d565b34610264575f366003190112610264576020600b54604051908152f35b60243590811515820361026457565b34610264576040366003190112610264576004356110d76110ac565b6110e033611f9b565b815f52600e6020526111018160405f209060ff801983541691151516179055565b1515907f784afb92b74f2c9ccd3cb1b9697580a90fadab59d6640bbb915d1637bfbbf0085f80a3005b34610264575f3660031901126102645760206040515f8152f35b346102645760403660031901126102645761115d61024e565b6111656110ac565b6001600160a01b0382169182156111e0578161119f6111b092335f52600160205260405f209060018060a01b03165f5260205260405f2090565b9060ff801983541691151516179055565b60405190151581527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b62ced3e160e81b5f525f60045260245ffd5b604051906112016020836103e1565b5f8252565b34610264575f366003190112610264576105e36040516112276040826103e1565b601881527f5275627953636f7265204261646765733a204b6174616e6100000000000000006020820152604051918291602083526020830190610557565b34610264576020366003190112610264576004355f52600e602052602060ff60405f2054166040519015158152f35b9181601f84011215610264578235916001600160401b038311610264576020808501948460051b01011161026457565b34610264576040366003190112610264576004356001600160401b038111610264576112f4903690600401611294565b6024356001600160401b03811161026457611313903690600401611294565b9061131d33611eb5565b81830361135c575f5b838110156109cc576001906113568160051b870135611350611349848888611ba9565b36916106b7565b9061160b565b01611326565b60405162461bcd60e51b815260206004820152600e60248201526d496e76616c696420706172616d7360901b6044820152606490fd5b34610264576020366003190112610264576004355f526006602052602060405f2054604051908152f35b34610264575f3660031901126102645760206040517f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a68152f35b34610264576040366003190112610264576109cc600435611415610268565b9061142f610a07825f526005602052600160405f20015490565b611df1565b3461026457604036600319011261026457602060ff610fde61145461024e565b61145c610268565b6001600160a01b039182165f9081526001865260408082209290931681526020919091522090565b346102645760a03660031901126102645761149d61024e565b6114a5610268565b60443590606435926084356001600160401b038111610264576114cc9036906004016106ed565b926001600160a01b0382163381141580611567575b611551576001600160a01b0384161561153e571561152c576109cc9461152460405192600184526020840152604083019160018352606084015260808301604052565b9290916122a3565b626a0d4560e21b5f525f60045260245ffd5b632bfa23e760e11b5f525f60045260245ffd5b63711bec9160e11b5f523360045260245260445ffd5b505f81815260016020908152604080832033845290915290205460ff16156114e1565b34610264575f3660031901126102645760206040517f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b9298152f35b34610264575f366003190112610264576105e36040516115e56040826103e1565b6005815264302e302e3160d81b6020820152604051918291602083526020830190610557565b9061161533611eb5565b815f52600960205260405f2081516001600160401b0381116103dc576116458161163f8454610375565b84611d12565b6020601f821160011461169d57816116769493926107a9925f9161080957508160011b915f199060031b1c19161790565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3565b601f198216906116b0845f5260205f2090565b915f5b8181106116d857509183916116769695946001941061084e575050811b0190556107ac565b9192602060018192868a0151815501940192016116b3565b805191908290602001825e015f815290565b61171290604051918280926116f0565b03902090565b939291906001600160a01b0385163381141580611751575b611551576001600160a01b0382161561153e571561152c57610439946122a3565b505f81815260016020908152604080832033845290915290205460ff1615611730565b3d1561179e573d906117858261069c565b9161179360405193846103e1565b82523d5f602084013e565b606090565b156117aa57565b60405162461bcd60e51b81526020600482015260146024820152732330b4b632b2103a379039b2b7321022ba3432b960611b6044820152606490fd5b604051906117f56020836103e1565b5f808352366020840137565b9061180b826108ce565b61181860405191826103e1565b8281528092611829601f19916108ce565b0190602036910137565b634e487b7160e01b5f52603260045260245ffd5b8051156118545760200190565b611833565b80518210156118545760209160051b010190565b919091805183518082036118e75750506118878151611801565b905f5b81518110156118e057806118cf60019260051b60208082870101519189010151905f918252602082815260408084206001600160a01b03909316845291905290205490565b6118d98286611859565b520161188a565b5090925050565b635b05999160e01b5f5260045260245260445ffd5b90916002600a5414611ab8576119e06119e5916002600a556119da604085019561192b60018851511015611ac7565b611938600b543414611b05565b335f908152600f602052604090206119d290546119686119ca8a5160405161197681611968602082018095611b48565b03601f1981018352826103e1565b5190206040519283916020830195338760609194939260808201957f66fe4d8b6c8e0542c70e2a244bf04681bb936b001f1be0f079a80e77158a8474835260018060a01b0316602083015260408201520152565b519020611e79565b9236916106b7565b90611e9f565b611eb5565b80516001600160a01b03165f908152600f60205260409020611a078154611b89565b9055815160018151115f14611a8a57508051611a36906001600160a01b03168351611a306111f2565b91612126565b805160209091015191516040516001600160a01b03909216917fff0a1dc048ef1a5e9e2845c6bb6cafd8b8531f3cb15368f4a708dec7d7bc789f918190611a7d9082610b42565b0390a36104396001600a55565b8151611ab39190611aa4906001600160a01b031691611847565b51611aad6111f2565b916120bd565b611a36565b633ee5aeb560e01b5f5260045ffd5b15611ace57565b60405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964204e46542069647360881b6044820152606490fd5b15611b0c57565b60405162461bcd60e51b815260206004820152601460248201527315dc9bdb99c81c185e5b595b9d08185b5bdd5b9d60621b6044820152606490fd5b80516020909101905f5b818110611b5f5750505090565b8251845260209384019390920191600101611b52565b634e487b7160e01b5f52601160045260245ffd5b9060018201809211611b9757565b611b75565b91908201809211611b9757565b91908110156118545760051b81013590601e19813603018212156102645701908135916001600160401b038311610264576020018236038113610264579190565b5f526009602052611bfd60405f206104b9565b805115611cb95760405190815f600854611c1681610375565b9060018116908115611c955750600114611c39575b506119689061058c936116f0565b905060085f527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35f905b828210611c79575050810160200161058c611c2b565b6020919293508060019154838589010152019101849291611c63565b60ff19166020858101919091528215159092028401909101915061058c9050611c2b565b5061058c610402565b601f8111611cce575050565b60085f5260205f20906020601f840160051c83019310611d08575b601f0160051c01905b818110611cfd575050565b5f8155600101611cf2565b9091508190611ce9565b601f8211611d1f57505050565b5f5260205f20906020601f840160051c83019310611d57575b601f0160051c01905b818110611d4c575050565b5f8155600101611d41565b9091508190611d38565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff16611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916600117905533916001600160a01b0316907f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b50505f90565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff1615611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916905533916001600160a01b0316907ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b604290611e84612353565b906040519161190160f01b8352600283015260228201522090565b61058c91611eac9161246f565b909291926124c7565b6001600160a01b0381165f9081527f15a28d26fa1bf736cf7edc9922607171ccb09c3c73b808e7772a3013e068a522602052604090205460ff1615611ef75750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6602452604490fd5b6001600160a01b0381165f9081527f05b8ccbb9d4d8fb16ea74ce3c29a41f1b461fbdaff4714a0d9a8eb05499746bc602052604090205460ff1615611f7d5750565b63e2517d3f60e01b5f5260018060a01b03166004525f60245260445ffd5b6001600160a01b0381165f9081527fe790de7705c8ebaa80068cd4fc0a095afd63ddb3e1cbffe9ca6f4baedbd7b739602052604090205460ff1615611fdd5750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929602452604490fd5b90815f52600560205260ff6120498260405f209060018060a01b03165f5260205260405f2090565b541615612054575050565b63e2517d3f60e01b5f5260018060a01b031660045260245260445ffd5b1561207857565b60405162461bcd60e51b815260206004820152601b60248201527f596f7520616c72656164792068617665207468697320626164676500000000006044820152606490fd5b5f828152602081815260408083206001600160a01b038516845290915290209192916120ea905415612071565b6001600160a01b0381161561153e57610439926040519060018252602082015260408101916001835260016060830152608082016040526121ba565b9291906121338151611801565b905f5b815160ff8216908110156121a15790600161218f8361218961218361215d60ff9789611859565b518c5f918252602082815260408084206001600160a01b03909316845291905290205490565b15612071565b86611859565b521660ff8114611b9757600101612136565b50939493506001600160a01b0384161561153e57610439935b90929391935f5b8451811015612245576121d48186611859565b515f908152600e602052604090205460ff16158061223e575b6121f9576001016121c1565b60405162461bcd60e51b815260206004820152601760248201527f5468697320746f6b656e206f6e6c7920666f7220796f750000000000000000006044820152606490fd5b505f6121ed565b50919390926122568282865f6129ad565b6001600160a01b03841661226b575b50505050565b8051600103612293579060208061228a95930151910151915f33612844565b5f808080612265565b61229e935f33612715565b61228a565b93909491925f5b84518110156122f4576122bd8186611859565b515f908152600e602052604090205460ff1615806122e2575b6121f9576001016122aa565b506001600160a01b03861615156122d6565b509092939194612306828683866129ad565b6001600160a01b03811661231c575b5050505050565b8451600103612342576020806123389601519201519233612844565b5f80808080612315565b61234e94919233612715565b612338565b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480612446575b156123ae577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815261244060c0826103e1565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000004614612385565b815191906041830361249f576124989250602082015190606060408401519301515f1a906128e2565b9192909190565b50505f9160029190565b600411156124b357565b634e487b7160e01b5f52602160045260245ffd5b6124d0816124a9565b806124d9575050565b6124e2816124a9565b600181036124f95763f645eedf60e01b5f5260045ffd5b612502816124a9565b6002810361251d575063fce698f760e01b5f5260045260245ffd5b806125296003926124a9565b146125315750565b6335e2f38360e21b5f5260045260245ffd5b60ff81146125545761058c9061296f565b50604051600354815f61256683610375565b80835292600181169081156125e9575060011461258a575b61058c925003826103e1565b5060035f90815290917fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8183106125cd57505090602061058c9282010161257e565b60209193508060019154838588010152019101909183926125b5565b6020925061058c94915060ff191682840152151560051b82010161257e565b60ff81146126195761058c9061296f565b50604051600454815f61262b83610375565b80835292600181169081156125e9575060011461264e5761058c925003826103e1565b5060045f90815290917f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b81831061269157505090602061058c9282010161257e565b6020919350806001915483858801015201910190918392612679565b90816020910312610264575161058c816102da565b6001600160a01b0391821681529116602082015260a06040820181905261058c949193919261270792916126f99190860190610b0f565b908482036060860152610b0f565b916080818403910152610557565b9091949293853b612729575b505050505050565b60209361274b91604051968795869563bc197c8160e01b8752600487016126c2565b03815f6001600160a01b0387165af15f91816127da575b5061279c5750612770611774565b805191908261279557632bfa23e760e11b5f526001600160a01b03821660045260245ffd5b9050602001fd5b6001600160e01b0319166343e6837f60e01b016127bf57505f8080808080612721565b632bfa23e760e11b5f526001600160a01b031660045260245ffd5b6127fd91925060203d602011612804575b6127f581836103e1565b8101906126ad565b905f612762565b503d6127eb565b6001600160a01b039182168152911660208201526040810191909152606081019190915260a06080820181905261058c92910190610557565b9091949293853b61285757505050505050565b60209361287991604051968795869563f23a6e6160e01b87526004870161280b565b03815f6001600160a01b0387165af15f91816128c1575b5061289e5750612770611774565b6001600160e01b031916630dc5919f60e01b016127bf57505f8080808080612721565b6128db91925060203d602011612804576127f581836103e1565b905f612890565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612964579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612959575f516001600160a01b0381161561294f57905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f9160039190565b60ff811690601f821161299e576040519161298b6040846103e1565b6020808452838101919036833783525290565b632cd44ac360e21b5f5260045ffd5b9392936129bc85848484612ac4565b6001600160a01b031615612a31575b6001600160a01b0316156129de57509050565b5f805b8251821015612a1f576001908260051b90612a10602080848a01015193870101515f52600660205260405f2090565b828154039055019101906129e1565b91505061043991925060075403600755565b915f90815b8351831015612a8257612a7a6001918460051b90612a68602080848c01015193890101515f52600660205260405f2090565b612a73838254611b9c565b9055611b9c565b920191612a36565b612a9a91949250612a9590600754611b9c565b600755565b6129cb565b9091612ab661058c93604084526040840190610b0f565b916020818403910152610b0f565b9392918051835190818103612c7e5750505f5b8151811015612bd8578060051b90602080838501015192860101518460018060a01b038916612b5b575b6001936001600160a01b038216612b1c575b50505001612ad7565b612b5191612b34612b49925f525f60205260405f2090565b9060018060a01b03165f5260205260405f2090565b918254611b9c565b90555f8481612b13565b509091612b7388612b34835f525f60205260405f2090565b54828110612ba157829160019493879203612b998b612b34845f525f60205260405f2090565b559350612b01565b6040516303dee4c560e01b81526001600160a01b038a16600482015260248101919091526044810183905260648101829052608490fd5b508051939493919291600103612c3b576020908101519181015160408051938452918301526001600160a01b03928316939092169133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291819081015b0390a4565b6040516001600160a01b03938416949093169233927f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb928291612c369183612a9f565b635b05999160e01b5f5260045260245260445ffdfea264697066735822122016c88d9aa89d5c43f1b260e79f12759fc7792e53d1b215c2a2ce0abbe79a56b864736f6c634300081c00332f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d15a28d26fa1bf736cf7edc9922607171ccb09c3c73b808e7772a3013e068a522e790de7705c8ebaa80068cd4fc0a095afd63ddb3e1cbffe9ca6f4baedbd7b73905b8ccbb9d4d8fb16ea74ce3c29a41f1b461fbdaff4714a0d9a8eb05499746bc0000000000000000000000000d0d5ff3cfef8b7b2b1cac6b6c27fd0846c09361000000000000000000000000381c031baa5995d0cc52386508050ac947780815000000000000000000000000381c031baa5995d0cc52386508050ac94778081500000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000007697066733a2f2f00000000000000000000000000000000000000000000000000

Deployed Bytecode

0x60806040526004361015610011575f80fd5b5f3560e01c8062fdd58e1461024957806301ffc9a71461024457806306fdde031461023f5780630e89341c146101c7578063162094c41461023a57806318160ddd14610235578063248a9ca3146102305780632eb2c2d61461022b5780632f2ff15d1461022657806336568abe146102215780633ccfd60b1461021c5780634e1273f4146102175780634f558e791461021257806355f804b31461020d5780636834e3a8146102085780637c2ccc451461020357806384b0196e146101fe57806391b7f5ed146101f957806391d14854146101f457806395d89b41146101ef57806398d5fdca146101ea5780639b3e5573146101e5578063a217fddf146101e0578063a22cb465146101db578063a3f4df7e146101a9578063b93c3770146101d6578063ba772d8b146101d1578063bd85b039146101cc578063c87b56dd146101c7578063d5391393146101c2578063d547741f146101bd578063e985e9c5146101b8578063f242432a146101b3578063f5b541a6146101ae578063f76f8d78146101a95763ffa1ad74146101a4575f80fd5b6115c4565b611206565b61158a565b611484565b611434565b6113f6565b6113bc565b610669565b611392565b6112c4565b611265565b611144565b61112a565b6110bb565b61108f565b610fea565b610f9b565b610f4e565b610e8e565b610ded565b610d88565b610c3e565b610c12565b610b53565b610a57565b610a13565b6109ce565b610942565b61089b565b61087e565b610708565b61058f565b6102ec565b610292565b600435906001600160a01b038216820361026457565b5f80fd5b602435906001600160a01b038216820361026457565b35906001600160a01b038216820361026457565b346102645760403660031901126102645760206102d16102b061024e565b6024355f525f835260405f209060018060a01b03165f5260205260405f2090565b54604051908152f35b6001600160e01b031981160361026457565b3461026457602036600319011261026457600435610309816102da565b63ffffffff60e01b16637965db0b60e01b8114908115610332575b506040519015158152602090f35b636cdb3d1360e11b811491508115610364575b8115610353575b505f610324565b6301ffc9a760e01b1490505f61034c565b6303a24d0760e21b81149150610345565b90600182811c921680156103a3575b602083101461038f57565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610384565b634e487b7160e01b5f52604160045260245ffd5b606081019081106001600160401b038211176103dc57604052565b6103ad565b90601f801991011681019081106001600160401b038211176103dc57604052565b604051905f826002549161041583610375565b808352926001811690811561049a575060011461043b575b610439925003836103e1565b565b5060025f90815290917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b81831061047e5750509060206104399282010161042d565b6020919350806001915483858901015201910190918492610466565b6020925061043994915060ff191682840152151560051b82010161042d565b9060405191825f8254926104cc84610375565b808452936001811690811561053557506001146104f1575b50610439925003836103e1565b90505f9291925260205f20905f915b818310610519575050906020610439928201015f6104e4565b6020919350806001915483858901015201910190918492610500565b90506020925061043994915060ff191682840152151560051b8201015f6104e4565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b90602061058c928181520190610557565b90565b34610264575f366003190112610264576040515f600c546105af81610375565b808452906001811690811561064557506001146105e7575b6105e3836105d7818503826103e1565b6040519182918261057b565b0390f35b600c5f9081527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7939250905b80821061062b575090915081016020016105d76105c7565b919260018160209254838588010152019101909291610613565b60ff191660208086019190915291151560051b840190910191506105d790506105c7565b34610264576020366003190112610264576105e3610688600435611bea565b604051918291602083526020830190610557565b6001600160401b0381116103dc57601f01601f191660200190565b9291926106c38261069c565b916106d160405193846103e1565b829481845281830111610264578281602093845f960137010152565b9080601f830112156102645781602061058c933591016106b7565b34610264576040366003190112610264576004356024356001600160401b0381116102645761073b9036906004016106ed565b9061074533611eb5565b805f52600960205260405f20918051926001600160401b0384116103dc57610777846107718354610375565b83611d12565b602093601f811160011461081457806107a9916107e295965f91610809575b508160011b915f199060031b1c19161790565b90555b827f6bb7ff708619ba0610cba295a58592e0451dee2622938c8755667688daf3529b6107da6105d783611bea565b0390a2611702565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3005b90508401515f610796565b601f198116610826835f5260205f2090565b905f5b8181106108665750906107e2959683600194931061084e575b5050811b0190556107ac565b8501515f1960f88460031b161c191690555f80610842565b85880151835560209788019760019093019201610829565b34610264575f366003190112610264576020600754604051908152f35b346102645760203660031901126102645760206108c66004355f526005602052600160405f20015490565b604051908152f35b6001600160401b0381116103dc5760051b60200190565b9080601f830112156102645781356108fc816108ce565b9261090a60405194856103e1565b81845260208085019260051b82010192831161026457602001905b8282106109325750505090565b8135815260209182019101610925565b346102645760a03660031901126102645761095b61024e565b610963610268565b906044356001600160401b038111610264576109839036906004016108e5565b6064356001600160401b038111610264576109a29036906004016108e5565b90608435936001600160401b038511610264576109c66109cc9536906004016106ed565b93611718565b005b34610264576040366003190112610264576109cc6004356109ed610268565b90610a0e610a07825f526005602052600160405f20015490565b3390612021565b611d61565b3461026457604036600319011261026457600435610a2f610268565b336001600160a01b03821603610a48576109cc91611df1565b63334bd91960e11b5f5260045ffd5b34610264575f36600319011261026457610a7033611f3b565b478015610aca57610ac581610ab55f8080807f11e9d9f7a772129e26cb0560945658c96b41c42ac6712d233e20c894bfcd00fd97335af1610aaf611774565b506117a3565b6040519081529081906020820190565b0390a1005b60405162461bcd60e51b815260206004820152601760248201527f5a65726f20616d6f756e7420746f2077697468647261770000000000000000006044820152606490fd5b90602080835192838152019201905f5b818110610b2c5750505090565b8251845260209384019390920191600101610b1f565b90602061058c928181520190610b0f565b34610264576040366003190112610264576004356001600160401b038111610264573660238201121561026457806004013590610b8f826108ce565b91610b9d60405193846103e1565b8083526024602084019160051b8301019136831161026457602401905b828210610bfa57836024356001600160401b038111610264576105e391610be8610bee9236906004016108e5565b9061186d565b60405191829182610b42565b60208091610c078461027e565b815201910190610bba565b34610264576020366003190112610264576004355f526006602052602060405f20541515604051908152f35b34610264576020366003190112610264576004356001600160401b03811161026457610c6e9036906004016106ed565b610c7733611f9b565b80516001600160401b0381116103dc57610c9b81610c96600854610375565b611cc2565b6020601f8211600114610d045781610cd39392610ccb925f91610cf957508160011b915f199060031b1c19161790565b600855611702565b7ff9c7803e94e0d3c02900d8a90893a6d5e90dd04d32a4cfe825520f82bf9f32f65f80a2005b90508301515f610796565b60085f52601f198216907ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3915f5b818110610d705750918391610cd3959460019410610d58575b5050811b01600855611702565b8401515f1960f88460031b161c191690555f80610d4b565b91926020600181928689015181550194019201610d32565b34610264576020366003190112610264576001600160a01b03610da961024e565b165f52600f602052602060405f2054604051908152f35b9181601f84011215610264578235916001600160401b038311610264576020838186019501011161026457565b6040366003190112610264576004356001600160401b03811161026457606060031982360301126102645760405190610e25826103c1565b610e318160040161027e565b8252602481013560208301526044810135906001600160401b038211610264576004610e6092369201016108e5565b6040820152602435906001600160401b03821161026457610e886109cc923690600401610dc0565b916118fc565b34610264575f36600319011261026457610f20610eca7f5275627953636f7265204261646765733a204b6174616e610000000000000018612543565b6105e3610ef67f302e302e31000000000000000000000000000000000000000000000000000005612608565b610f2e610f016117e6565b91604051958695600f60f81b875260e0602088015260e0870190610557565b908582036040870152610557565b904660608501523060808501525f60a085015283820360c0850152610b0f565b34610264576020366003190112610264577f66cbca4f3c64fecf1dcb9ce094abcf7f68c3450a1d4e3a8e917dd621edb4ebe06020600435610f8e33611f9b565b80600b55604051908152a1005b3461026457604036600319011261026457602060ff610fde600435610fbe610268565b905f526005845260405f209060018060a01b03165f5260205260405f2090565b54166040519015158152f35b34610264575f366003190112610264576040515f600d5461100a81610375565b80845290600181169081156106455750600114611031576105e3836105d7818503826103e1565b600d5f9081527fd7b6990105719101dabeb77144f2a3385c8033acd3af97e9423a695e81ad1eb5939250905b808210611075575090915081016020016105d76105c7565b91926001816020925483858801015201910190929161105d565b34610264575f366003190112610264576020600b54604051908152f35b60243590811515820361026457565b34610264576040366003190112610264576004356110d76110ac565b6110e033611f9b565b815f52600e6020526111018160405f209060ff801983541691151516179055565b1515907f784afb92b74f2c9ccd3cb1b9697580a90fadab59d6640bbb915d1637bfbbf0085f80a3005b34610264575f3660031901126102645760206040515f8152f35b346102645760403660031901126102645761115d61024e565b6111656110ac565b6001600160a01b0382169182156111e0578161119f6111b092335f52600160205260405f209060018060a01b03165f5260205260405f2090565b9060ff801983541691151516179055565b60405190151581527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b62ced3e160e81b5f525f60045260245ffd5b604051906112016020836103e1565b5f8252565b34610264575f366003190112610264576105e36040516112276040826103e1565b601881527f5275627953636f7265204261646765733a204b6174616e6100000000000000006020820152604051918291602083526020830190610557565b34610264576020366003190112610264576004355f52600e602052602060ff60405f2054166040519015158152f35b9181601f84011215610264578235916001600160401b038311610264576020808501948460051b01011161026457565b34610264576040366003190112610264576004356001600160401b038111610264576112f4903690600401611294565b6024356001600160401b03811161026457611313903690600401611294565b9061131d33611eb5565b81830361135c575f5b838110156109cc576001906113568160051b870135611350611349848888611ba9565b36916106b7565b9061160b565b01611326565b60405162461bcd60e51b815260206004820152600e60248201526d496e76616c696420706172616d7360901b6044820152606490fd5b34610264576020366003190112610264576004355f526006602052602060405f2054604051908152f35b34610264575f3660031901126102645760206040517f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a68152f35b34610264576040366003190112610264576109cc600435611415610268565b9061142f610a07825f526005602052600160405f20015490565b611df1565b3461026457604036600319011261026457602060ff610fde61145461024e565b61145c610268565b6001600160a01b039182165f9081526001865260408082209290931681526020919091522090565b346102645760a03660031901126102645761149d61024e565b6114a5610268565b60443590606435926084356001600160401b038111610264576114cc9036906004016106ed565b926001600160a01b0382163381141580611567575b611551576001600160a01b0384161561153e571561152c576109cc9461152460405192600184526020840152604083019160018352606084015260808301604052565b9290916122a3565b626a0d4560e21b5f525f60045260245ffd5b632bfa23e760e11b5f525f60045260245ffd5b63711bec9160e11b5f523360045260245260445ffd5b505f81815260016020908152604080832033845290915290205460ff16156114e1565b34610264575f3660031901126102645760206040517f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b9298152f35b34610264575f366003190112610264576105e36040516115e56040826103e1565b6005815264302e302e3160d81b6020820152604051918291602083526020830190610557565b9061161533611eb5565b815f52600960205260405f2081516001600160401b0381116103dc576116458161163f8454610375565b84611d12565b6020601f821160011461169d57816116769493926107a9925f9161080957508160011b915f199060031b1c19161790565b907fda84ca2183491f179a603e877b2cb058e42195041c2b9c53d746427e519a34df5f80a3565b601f198216906116b0845f5260205f2090565b915f5b8181106116d857509183916116769695946001941061084e575050811b0190556107ac565b9192602060018192868a0151815501940192016116b3565b805191908290602001825e015f815290565b61171290604051918280926116f0565b03902090565b939291906001600160a01b0385163381141580611751575b611551576001600160a01b0382161561153e571561152c57610439946122a3565b505f81815260016020908152604080832033845290915290205460ff1615611730565b3d1561179e573d906117858261069c565b9161179360405193846103e1565b82523d5f602084013e565b606090565b156117aa57565b60405162461bcd60e51b81526020600482015260146024820152732330b4b632b2103a379039b2b7321022ba3432b960611b6044820152606490fd5b604051906117f56020836103e1565b5f808352366020840137565b9061180b826108ce565b61181860405191826103e1565b8281528092611829601f19916108ce565b0190602036910137565b634e487b7160e01b5f52603260045260245ffd5b8051156118545760200190565b611833565b80518210156118545760209160051b010190565b919091805183518082036118e75750506118878151611801565b905f5b81518110156118e057806118cf60019260051b60208082870101519189010151905f918252602082815260408084206001600160a01b03909316845291905290205490565b6118d98286611859565b520161188a565b5090925050565b635b05999160e01b5f5260045260245260445ffd5b90916002600a5414611ab8576119e06119e5916002600a556119da604085019561192b60018851511015611ac7565b611938600b543414611b05565b335f908152600f602052604090206119d290546119686119ca8a5160405161197681611968602082018095611b48565b03601f1981018352826103e1565b5190206040519283916020830195338760609194939260808201957f66fe4d8b6c8e0542c70e2a244bf04681bb936b001f1be0f079a80e77158a8474835260018060a01b0316602083015260408201520152565b519020611e79565b9236916106b7565b90611e9f565b611eb5565b80516001600160a01b03165f908152600f60205260409020611a078154611b89565b9055815160018151115f14611a8a57508051611a36906001600160a01b03168351611a306111f2565b91612126565b805160209091015191516040516001600160a01b03909216917fff0a1dc048ef1a5e9e2845c6bb6cafd8b8531f3cb15368f4a708dec7d7bc789f918190611a7d9082610b42565b0390a36104396001600a55565b8151611ab39190611aa4906001600160a01b031691611847565b51611aad6111f2565b916120bd565b611a36565b633ee5aeb560e01b5f5260045ffd5b15611ace57565b60405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964204e46542069647360881b6044820152606490fd5b15611b0c57565b60405162461bcd60e51b815260206004820152601460248201527315dc9bdb99c81c185e5b595b9d08185b5bdd5b9d60621b6044820152606490fd5b80516020909101905f5b818110611b5f5750505090565b8251845260209384019390920191600101611b52565b634e487b7160e01b5f52601160045260245ffd5b9060018201809211611b9757565b611b75565b91908201809211611b9757565b91908110156118545760051b81013590601e19813603018212156102645701908135916001600160401b038311610264576020018236038113610264579190565b5f526009602052611bfd60405f206104b9565b805115611cb95760405190815f600854611c1681610375565b9060018116908115611c955750600114611c39575b506119689061058c936116f0565b905060085f527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35f905b828210611c79575050810160200161058c611c2b565b6020919293508060019154838589010152019101849291611c63565b60ff19166020858101919091528215159092028401909101915061058c9050611c2b565b5061058c610402565b601f8111611cce575050565b60085f5260205f20906020601f840160051c83019310611d08575b601f0160051c01905b818110611cfd575050565b5f8155600101611cf2565b9091508190611ce9565b601f8211611d1f57505050565b5f5260205f20906020601f840160051c83019310611d57575b601f0160051c01905b818110611d4c575050565b5f8155600101611d41565b9091508190611d38565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff16611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916600117905533916001600160a01b0316907f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b50505f90565b5f8181526005602090815260408083206001600160a01b038616845290915290205460ff1615611deb575f8181526005602090815260408083206001600160a01b03861684529091529020805460ff1916905533916001600160a01b0316907ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b604290611e84612353565b906040519161190160f01b8352600283015260228201522090565b61058c91611eac9161246f565b909291926124c7565b6001600160a01b0381165f9081527f15a28d26fa1bf736cf7edc9922607171ccb09c3c73b808e7772a3013e068a522602052604090205460ff1615611ef75750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6602452604490fd5b6001600160a01b0381165f9081527f05b8ccbb9d4d8fb16ea74ce3c29a41f1b461fbdaff4714a0d9a8eb05499746bc602052604090205460ff1615611f7d5750565b63e2517d3f60e01b5f5260018060a01b03166004525f60245260445ffd5b6001600160a01b0381165f9081527fe790de7705c8ebaa80068cd4fc0a095afd63ddb3e1cbffe9ca6f4baedbd7b739602052604090205460ff1615611fdd5750565b63e2517d3f60e01b5f9081526001600160a01b03919091166004527f97667070c54ef182b0f5858b034beac1b6f3089aa2d3188bb1e8929f4fa9b929602452604490fd5b90815f52600560205260ff6120498260405f209060018060a01b03165f5260205260405f2090565b541615612054575050565b63e2517d3f60e01b5f5260018060a01b031660045260245260445ffd5b1561207857565b60405162461bcd60e51b815260206004820152601b60248201527f596f7520616c72656164792068617665207468697320626164676500000000006044820152606490fd5b5f828152602081815260408083206001600160a01b038516845290915290209192916120ea905415612071565b6001600160a01b0381161561153e57610439926040519060018252602082015260408101916001835260016060830152608082016040526121ba565b9291906121338151611801565b905f5b815160ff8216908110156121a15790600161218f8361218961218361215d60ff9789611859565b518c5f918252602082815260408084206001600160a01b03909316845291905290205490565b15612071565b86611859565b521660ff8114611b9757600101612136565b50939493506001600160a01b0384161561153e57610439935b90929391935f5b8451811015612245576121d48186611859565b515f908152600e602052604090205460ff16158061223e575b6121f9576001016121c1565b60405162461bcd60e51b815260206004820152601760248201527f5468697320746f6b656e206f6e6c7920666f7220796f750000000000000000006044820152606490fd5b505f6121ed565b50919390926122568282865f6129ad565b6001600160a01b03841661226b575b50505050565b8051600103612293579060208061228a95930151910151915f33612844565b5f808080612265565b61229e935f33612715565b61228a565b93909491925f5b84518110156122f4576122bd8186611859565b515f908152600e602052604090205460ff1615806122e2575b6121f9576001016122aa565b506001600160a01b03861615156122d6565b509092939194612306828683866129ad565b6001600160a01b03811661231c575b5050505050565b8451600103612342576020806123389601519201519233612844565b5f80808080612315565b61234e94919233612715565b612338565b307f000000000000000000000000f57cb671d50535126694ce5cc3cebe3f327948966001600160a01b03161480612446575b156123ae577f2bc3a2fa25488e46acf6c13932ff55ee909b70cdf2d029c5247019e9f0e4d48990565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527fe8f058afe6e32abe76df00bdc41315818012c21ece42c2f43ba3dcf364cde20d60408201527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc19916381188560608201524660808201523060a082015260a0815261244060c0826103e1565b51902090565b507f00000000000000000000000000000000000000000000000000000000000b67d24614612385565b815191906041830361249f576124989250602082015190606060408401519301515f1a906128e2565b9192909190565b50505f9160029190565b600411156124b357565b634e487b7160e01b5f52602160045260245ffd5b6124d0816124a9565b806124d9575050565b6124e2816124a9565b600181036124f95763f645eedf60e01b5f5260045ffd5b612502816124a9565b6002810361251d575063fce698f760e01b5f5260045260245ffd5b806125296003926124a9565b146125315750565b6335e2f38360e21b5f5260045260245ffd5b60ff81146125545761058c9061296f565b50604051600354815f61256683610375565b80835292600181169081156125e9575060011461258a575b61058c925003826103e1565b5060035f90815290917fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8183106125cd57505090602061058c9282010161257e565b60209193508060019154838588010152019101909183926125b5565b6020925061058c94915060ff191682840152151560051b82010161257e565b60ff81146126195761058c9061296f565b50604051600454815f61262b83610375565b80835292600181169081156125e9575060011461264e5761058c925003826103e1565b5060045f90815290917f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b81831061269157505090602061058c9282010161257e565b6020919350806001915483858801015201910190918392612679565b90816020910312610264575161058c816102da565b6001600160a01b0391821681529116602082015260a06040820181905261058c949193919261270792916126f99190860190610b0f565b908482036060860152610b0f565b916080818403910152610557565b9091949293853b612729575b505050505050565b60209361274b91604051968795869563bc197c8160e01b8752600487016126c2565b03815f6001600160a01b0387165af15f91816127da575b5061279c5750612770611774565b805191908261279557632bfa23e760e11b5f526001600160a01b03821660045260245ffd5b9050602001fd5b6001600160e01b0319166343e6837f60e01b016127bf57505f8080808080612721565b632bfa23e760e11b5f526001600160a01b031660045260245ffd5b6127fd91925060203d602011612804575b6127f581836103e1565b8101906126ad565b905f612762565b503d6127eb565b6001600160a01b039182168152911660208201526040810191909152606081019190915260a06080820181905261058c92910190610557565b9091949293853b61285757505050505050565b60209361287991604051968795869563f23a6e6160e01b87526004870161280b565b03815f6001600160a01b0387165af15f91816128c1575b5061289e5750612770611774565b6001600160e01b031916630dc5919f60e01b016127bf57505f8080808080612721565b6128db91925060203d602011612804576127f581836103e1565b905f612890565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612964579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612959575f516001600160a01b0381161561294f57905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f9160039190565b60ff811690601f821161299e576040519161298b6040846103e1565b6020808452838101919036833783525290565b632cd44ac360e21b5f5260045ffd5b9392936129bc85848484612ac4565b6001600160a01b031615612a31575b6001600160a01b0316156129de57509050565b5f805b8251821015612a1f576001908260051b90612a10602080848a01015193870101515f52600660205260405f2090565b828154039055019101906129e1565b91505061043991925060075403600755565b915f90815b8351831015612a8257612a7a6001918460051b90612a68602080848c01015193890101515f52600660205260405f2090565b612a73838254611b9c565b9055611b9c565b920191612a36565b612a9a91949250612a9590600754611b9c565b600755565b6129cb565b9091612ab661058c93604084526040840190610b0f565b916020818403910152610b0f565b9392918051835190818103612c7e5750505f5b8151811015612bd8578060051b90602080838501015192860101518460018060a01b038916612b5b575b6001936001600160a01b038216612b1c575b50505001612ad7565b612b5191612b34612b49925f525f60205260405f2090565b9060018060a01b03165f5260205260405f2090565b918254611b9c565b90555f8481612b13565b509091612b7388612b34835f525f60205260405f2090565b54828110612ba157829160019493879203612b998b612b34845f525f60205260405f2090565b559350612b01565b6040516303dee4c560e01b81526001600160a01b038a16600482015260248101919091526044810183905260648101829052608490fd5b508051939493919291600103612c3b576020908101519181015160408051938452918301526001600160a01b03928316939092169133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291819081015b0390a4565b6040516001600160a01b03938416949093169233927f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb928291612c369183612a9f565b635b05999160e01b5f5260045260245260445ffdfea264697066735822122016c88d9aa89d5c43f1b260e79f12759fc7792e53d1b215c2a2ce0abbe79a56b864736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000d0d5ff3cfef8b7b2b1cac6b6c27fd0846c09361000000000000000000000000381c031baa5995d0cc52386508050ac947780815000000000000000000000000381c031baa5995d0cc52386508050ac94778081500000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000007697066733a2f2f00000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : admin (address): 0x0d0D5Ff3cFeF8B7B2b1cAC6B6C27Fd0846c09361
Arg [1] : operator (address): 0x381c031bAA5995D0Cc52386508050Ac947780815
Arg [2] : minter (address): 0x381c031bAA5995D0Cc52386508050Ac947780815
Arg [3] : baseURI (string): ipfs://

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 0000000000000000000000000d0d5ff3cfef8b7b2b1cac6b6c27fd0846c09361
Arg [1] : 000000000000000000000000381c031baa5995d0cc52386508050ac947780815
Arg [2] : 000000000000000000000000381c031baa5995d0cc52386508050ac947780815
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000007
Arg [5] : 697066733a2f2f00000000000000000000000000000000000000000000000000


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0xF57Cb671D50535126694Ce5Cc3CeBe3F32794896
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.